Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tests der Quantenmechanik mit massiven Teilchen

14.08.2017

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit dieser Regeln mit unserer alltäglichen Erfahrung motiviert ForscherInnen seit langem zu einer Suche nach minimalen Änderungen der Quantenmechanik, die es erlauben den Übergang von der Quantenwelt in die klassische zu beschreiben.


Durch den Vergleich der Interferenzbilder hinter einer Kombination von Schlitzen war es möglich, die Quantenmechanik mit massiven Teilchen zu testen.

Copyright: Quantennanophysik, Fakultät für Physik, Universität Wien; Bild-Design: Christian Knobloch

Ein möglicher Indikator für solch einen Übergang ist Vielpfadinterferenz. In der Standardquantenmechanik kann man jedes Interferenzmuster über die Kombination aller möglichen Pfadpaare nachbilden, unabhängig davon, wie viele Pfade die Welle tatsächlich nutzt. Jedes verbleibende Muster wäre die Folge von Vielpfadinterferenz und könnte auf neue physikalische Phänomene hinweisen.

Während bisherige Tests mit Licht oder Mikrowellenstrahlung durchgeführt wurden, stellt das Experiment der ForscherInnen aus Wien und Tel Aviv den ersten dezidierten Test mit massiven Teilchen dar. "Die Idee ist schon seit mehr als 20 Jahren bekannt. Doch erst jetzt haben wir die technologischen Möglichkeiten solch ein Experiment mit massiven Teilchen in die Tat umzusetzen", sagt Christian Brand, einer der Hauptautoren der Studie.

Materiewellenbeugung an einem Mehrfachspalt

In ihren Experimenten an der Universität Wien untersucht die Gruppe für Quantennanophysik um Markus Arndt die Welleneigenschaften von komplexen organischen Molekülen. Um die Moleküle in solch einen nicht-klassischen Zustand zu überführen, wurden sie von einer wenige Mikrometer großen Quelle im Hochvakuum verdampft, wo sie sich ungehindert ausbreiteten.

Nach einer gewissen Zeit waren die Moleküle delokalisiert. Das heißt, dass es unmöglich war festzustellen, wo sie sich genau befanden. Sobald ein delokalisiertes Molekül auf ein Gitter traf, war es so, als ob es mehrere Spalte gleichzeitig passierte. Das resultierende Interferenzmuster wurde an einem Detektor aufgenommen und sorgsam ausgewertet. Durch den Vergleich der Beugungsbilder von Einzel-, Doppel- und Dreifachspalten gelang es den WissenschafterInnen Höchstgrenzen für den Anteil von Vielpfadinterferenz anzugeben.

Nanofabrikation: eine wegweisende Technologie

Eine wesentliche Komponente des Experiments war die Maske – eine ultradünne Membran aus Kohlenstoff, in die die verschiedenen Schlitze geschrieben wurden. Sie wurde entworfen und hergestellt von Yigal Lilach und Ori Cheshnovsky an der Universität von Tel Aviv. Die Anforderungen an die Maske waren enorm. So mussten die Abweichungen der Schlitzparameter zu der Größe der Moleküle vergleichbar sein, die an ihnen gebeugt wurden.

An diesen Strukturen wurden dann in Wien die Interferenzexperimente durchgeführt. Insgesamt konnte ein großer Bereich an molekularen Geschwindigkeiten in den Experimenten untersucht werden. Dabei hat sich herausgestellt, dass alle untersuchten Geschwindigkeiten den Vorhersagen der Quantenmechanik mit einer maximalen Unsicherheit von einem Prozent folgten.

"Das ist der erste explizite Test dieser Art, der mit massiven Teilchen durchgeführt wurde", erklärt Joseph Cotter, der Erstautor dieser Publikation. "Frühere Studien haben wegweisende Experimente mit Licht und Mikrowellenstrahlung durchgeführt. Mit diesem Experiment gelang es uns erstmals Obergrenzen für den Anteil von Vielpfadinterferenz mit Materiewellen festzulegen."

Publikation in Science Advances
In search of multipath interference using large molecules
J. P. Cotter, C. Brand, C. Knobloch, Y. Lilach, O. Cheshnovsky, M. Arndt. In: Science Advances 3, e1602478 (2017)
Doi: 10.1126/sciadv.1602478

Wissenschaftliche Kontakte
Dr. Christian Brand
Gruppe für Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-725 27
brandc6@univie.ac.at

Univ. Prof. Markus Arndt (Gruppenleiter)
Gruppe für Quantenoptik, Quantennanophysik und Quanteninformation
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-512 05
markus.arndt@univie.ac.at

Rückfragehinweis
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics