Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Test der Symmetrie der Raumzeit mit Atomuhren

14.03.2019

Der Vergleich zweier optischer Atomuhren bestätigt ihre hohe Genauigkeit und eine Grundannahme der Relativitätstheorie - Nature-Veröffentlichung

Einstein formulierte in seiner Speziellen Relativitätstheorie die These, die Lichtgeschwindigkeit sei immer und unter allen Bedingungen gleich. Doch diese Gleichförmigkeit der Raumzeit könnte nach theoretischen Modellen der Quantengravitation für Teilchen nicht gelten.


Ein abstimmbarer Laser regt eine äußerst schmalbandige Resonanz eines Yb+-Ions in einer Atomuhr an. Zwei Ionen mit senkrecht zueinander ausgerichteten Wellenfunktionen (gelb) werden mit Laserlicht mit einer einstellbaren Frequenzverschiebung Δf abgefragt, um eine möglicherweise auftretende Frequenzdifferenz zu messen. Der gesamte Experimentaufbau rotiert mit der Erde einmal am Tag relativ zum Fixsternhimmel. (Abb.: PTB)

Jetzt haben Physiker dies mit einem ersten Langzeitvergleich zweier optischer Ytterbiumuhren in der Physikalisch-Technischen Bundesanstalt (PTB) überprüft. Mit diesen Uhren, die innerhalb von zehn Milliarden Jahren nur eine einzige Sekunde falsch gehen, müssten auch extrem kleine Abweichungen in der Bewegung der Elektronen des Ytterbiums gemessen werden können. Doch sie maßen keine Veränderung für unterschiedliche Ausrichtungen der Uhren im Raum.

Damit ist die bisherige experimentelle Grenze für den Test der Raumzeit-Symmetrie um das Hundertfache verschärft worden. Zudem wird die extrem geringe systematische Messunsicherheit der optischen Ytterbiumuhren von weniger als 4 · 10E–18 bestätigt. Seine Ergebnisse hat das Team aus Physikern der PTB und der Universität Delaware (USA) in der aktuellen Ausgabe von Nature veröffentlicht.

Es ist eines der berühmtesten historischen Physik-Experimente: Michelson und Morley zeigten schon 1887 mithilfe eines drehbar gelagerten Interferometers, mit dem sie die Lichtgeschwindigkeit entlang zweier senkrecht zueinander stehender optischer Achsen verglichen, was Einstein später theoretisch formulierte.

Es wurde zu einer Grundaussage seiner Speziellen Relativitätstheorie: Die Lichtgeschwindigkeit ist unabhängig von der Raumrichtung immer gleich. Nun kann man fragen: Gilt diese nach Hendrik Antoon Lorentz benannte Symmetrie des Raumes auch für die Bewegung materieller Teilchen, oder gibt es Richtungen, entlang derer sie sich bei gleicher Energie schneller oder langsamer bewegen?

Insbesondere für hohe Energien der Teilchen sagen theoretische Modelle der Quantengravitation eine Verletzung der Lorentz-Symmetrie vorher.

Mit zwei Atomuhren wurde jetzt ein Experiment durchgeführt, um diese Fragestellung mit hoher Präzision zu untersuchen. Die Frequenz dieser Atomuhren wird jeweils von der Resonanzfrequenz eines einzelnen, in einer Falle gespeicherten Yb+-Ions gesteuert. Während die Verteilung der Elektronen des Yb+-Ions im Grundzustand kugelsymmetrisch ist, befinden sich die Elektronen im angeregten Zustand in einer deutlich elongierten Wellenfunktion und bewegen sich damit hauptsächlich entlang einer Raumrichtung.

Die Ausrichtung der Wellenfunktion wird durch ein in der Uhr angelegtes Magnetfeld bestimmt und wurde für beide Uhren etwa senkrecht zueinander gewählt. Die Uhren sind im Labor fest montiert und drehen sich gemeinsam mit der Erde einmal am Tag (genauer: einmal in 23,9345 Stunden) relativ zu den Fixsternen.

Eine Abhängigkeit der Elektronengeschwindigkeit von der Orientierung im Raum würde sich daher als periodisch mit der Erdrotation auftretende Frequenzdifferenz zwischen beiden Atomuhren zeigen. Um einen solchen Effekt klar von möglichen technischen Einflüssen unterscheiden zu können, wurden die Frequenzen der Yb+-Uhren über mehr als 1000 Stunden verglichen. Es wurde dabei keine Veränderung der Uhren zueinander für den zugänglichen Bereich von Periodendauern von wenigen Minuten bis zu 80 Stunden beobachtet.

Für die theoretische Interpretation und Rechnungen zur Atomstruktur des Yb+-Ions hat das PTB-Team mit theoretischen Physikern von der University of Delaware, USA, zusammengearbeitet. Die aktuellen Resultate verschärfen nun die von Forschern der Universität Berkeley 2015 mit Ca+-Ionen gesetzten Grenzen um etwa einen Faktor 100.

Im Mittel über die gesamte Messzeit zeigten beide Uhren eine relative Frequenzabweichung von weniger als 3 · 10E–18. Dies bestätigt die vorher abgeschätzte kombinierte Unsicherheit der Uhren von 4 · 10E–18 und ist ein wichtiger Fortschritt in der Charakterisierung von optischen Atomuhren auf diesem Genauigkeitsniveau. Potenziell zeigen diese Uhren erst nach etwa zehn Milliarden Jahren eine Differenz von einer Sekunde an.
(es/ptb)

Bildunterschrift:
Ein abstimmbarer Laser regt eine äußerst schmalbandige Resonanz eines Yb+-Ions in einer Atomuhr an. Zwei Ionen mit senkrecht zueinander ausgerichteten Wellenfunktionen (gelb) werden mit Laserlicht mit einer einstellbaren Frequenzverschiebung Δf abgefragt, um eine möglicherweise auftretende Frequenzdifferenz zu messen. Der gesamte Experimentaufbau rotiert mit der Erde einmal am Tag relativ zum Fixsternhimmel. (Abb.: PTB)

Wissenschaftliche Ansprechpartner:

Dr. Nils Huntemann, Arbeitsgruppe „Optische Uhren mit gespeicherten Ionen“,
Telefon: (0531) 592-4432, E-Mail: nils.huntemann@ptb.de

Originalpublikation:

Christian Sanner, Nils Huntemann, Richard Lange, Christian Tamm, Ekkehard Peik, Marianna S. Safronova, Sergey G. Porsev: Optical clock comparison for Lorentz symmetry testing. Nature (2019) - (erscheint als Printausgabe am 14.3.2019)

Dipl.-Journ. Erika Schow | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physikerteam sagt neue Moleküle aus Licht voraus
26.02.2020 | Leibniz Universität Hannover

nachricht Wie groß das Neutron ist
26.02.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IGF macht's möglich: Lemgoer Forschungsteam entwickelt neues Verfahren zur Abwehr von Noroviren auf Obst und Gemüse

26.02.2020 | Biowissenschaften Chemie

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungsnachrichten

Neue Wege im Kampf gegen die Parkinson-Krankheit: HZDR-Forscher entwickeln Radiotracer für die Differentialdiagnostik

26.02.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics