Teilchenphysiker der TU Dresden an Entdeckung neuer Quarks-Wechselwirkungen beteiligt

Science Fiction Autoren lassen gerne Laserschwerter aufeinander krachen. Doch diese Vorstellung wird wohl für immer ein Traum bleiben. Denn Licht besteht aus Photonen – in der Physik nennt man sie auch Botenteilchen der elektromagnetischen Wechselwirkung.

Gemäß den Gesetzen der Physik können Photonen nur mit Objekten wechselwirken, die eine elektrische Ladung tragen. Da sie selbst elektrisch neutral sind, bewegen sie sich einfach durcheinander hindurch. Lichtstrahlen kann man kreuzen, aber man kann mit ihnen keine Schläge setzen.

Im Gegensatz zur elektromagnetischen Wechselwirkung streuen bei der nuklearen „Schwachen Wechselwirkung“ deren Botenteilchen aneinander, da diese selbst schwache Ladung besitzen. Dresdner Forscherinnen und Forschern ist es nun innerhalb der ATLAS Kollaboration am CERN gelungen, diese Streuung dieser mit „W“ und „Z“ bezeichneten Teilchen in gleich zwei verschiedenen Prozessen zweifelsfrei nachzuweisen.

Dies gehört zu den herausragenden Ergebnissen, die auf der International Conference on High Energy Physics ICHEP2018 in Seoul am 5. Juli vorgestellt wurden. Dazu haben Forschungsgruppen aus China, USA, Kanada, Südafrika, UK, Griechenland und Frankreich mit den deutschen Forscherinnen und Forschern aus Dresden, Freiburg und dem DESY in Hamburg intensiv zusammengearbeitet.

Für die Analyse wurden Daten des ATLAS-Experiments aus den Jahre 2015 und 2016 ausgewertet. Der ATLAS-Detektor zeichnet auf, was bei den Kollisionen zwischen den Protonen passiert, die im Teilchenbeschleuniger LHC mit annähernd Lichtgeschwindigkeit kreisen und schließlich zusammenstoßen. W- und Z-Teilchen entstehen, wenn ein Quark – Bestandteil der hochenergeti­schen Protonen – zufällig ein solches Botenteilchen aussendet.

Wegen ihrer kurzen Lebensdauer können diese von den Quarks abgestrahlten Quanten des „Schwachen Lichts“ allerdings nur eine Strecke von 0,1 Femtometer zurücklegen, also ca. 1/10 eines Protonradius, dann wandeln sie sich in andere Teilchen um. Damit sie überhaupt miteinander wechselwirken können, müssen sich diese ultra-kurzen „Lichtschwerter“ zusätzlich auch noch näher kommen als 0,002 Femtometer (ca. 1/500 eines Protonradius). Die nun beobachteten Streuprozesse gehören zu den seltensten Ereignissen, die man bisher am LHC beobachten konnte: Man benötigt ungefähr 20 Billionen Proton-Kollisionen, bis solch eine Konstellation zufällig eintritt.

Zwei Doktorandinnen des Instituts für Kern- und Teilchenphysik konnten das gesuchte Signal aus dem „Rauschen“ des Untergrundes extrahieren und fanden 60 Kandidaten für Streuereignisse WW  → WW gleich geladener W-Teilchen. Das ist mehr als das Dreifache dessen, was in Daten aus dem Jahr 2012 zu sehen war und bereits auf diesen Prozess hinwies. Stefanie Todt hat sich in ihrer Doktorarbeit mit der WW-Streuung beschäftigt: „Gemeinsam mit Franziska Iltzsche haben wir jeden Stein umgedreht, bis wir sicher waren, dass wir wirklich das entdeckt hatten, was wir suchten.“

Tim Herrmann, einer der beiden Doktoranden auf der Suche nach der WZ → WZ Streuung, dankte seinem seit 12 Wochen in Elternzeit pausierenden Mit-Doktoranden: „Als Analyse-Koordinator hat Carsten Bittrich diese Entdeckung bis zur ersten Fassung der Veröffentlichung entscheidend vorbereitet, die nun gestern von der gesamten ATLAS-Kollaboration freigegeben wurde.“ Mit der Beobachtung von 44 WZ → WZ Streu-Ereignissen konnte dieser Prozess weltweit das erste Mal nachgewiesen werden, was insbesondere der Anwendung einer besonderen Methode des maschinellen Lernens zu verdanken war.

Die genaue Untersuchung der Streuung mit noch mehr Daten könnte Hinweise auf neue Teilchen oder Unterstrukturen bekannter Teilchen liefern. Weiterhin erhofft man sich neue Erkenntnisse über das Brout-Englert-Higgs-Feld: „Genau sechs Jahre nach der Entdeckung des Higgs-Teilchens haben wir nun zwei Prozesse an der Hand, mit deren Hilfe wir die Eigenschaften der neuen Spezies von Higgs-Teilchen genauer untersuchen können,“ erklärt Michael Kobel, der Leiter der Dresdner Arbeitsgruppe.

„Das Brout-Englert-Higgs Feld lässt die Streuung des ‘Schwachen Lichts‘ nur bei winzigen Abständen der W- und Z-Teilchen zu. Es wirkt also als eine Art Stoßdämpfer. Eine noch genauere Messung soll prüfen, ob es mehrere dämpfende Higgs-Teilchen gibt, oder ob diese eine Unterstruktur besitzen und selbst in Anregung versetzt werden können.“ 

Originalveröffentlichungen

Weitere Artikel und Videos

Informationen für Journalisten:
Prof. Dr. Michael Kobel
Institut für Kern- und Teilchenphysik
Tel.: +49 (0) 171 5157344
michael.kobel@tu-dresden.de

https://tu-dresden.de/mn/physik/iktp/arbeitsgruppen/teilchenphysik/forschung

Media Contact

Kim-Astrid Magister idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.tu-dresden.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer