Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchenphysik: Roulettespiel im Mikrokosmos

23.10.2015

Physiker der Universität Bonn haben am Computer simuliert, wie es bestimmten Teilchen in einer neutronenreichen Umgebung ergeht. Dazu nutzten sie ein neuartiges Rechenverfahren – und kamen damit zu einem unerwarteten Ergebnis. An der Arbeit waren auch Forscher der TU Darmstadt und der North Carolina State University beteiligt. Die Resultate erscheinen heute in den „Physical Review Letters“.

Wenn man einen Magneten auf einen Tisch legt und einen zweiten darüber hält, erscheint dieser aufgrund der Anziehung durch den ersten Magneten schwerer, als er eigentlich ist. Durch die Wechselwirkung der beiden entsteht also scheinbar etwas Neues mit veränderten Eigenschaften.


Dr. Shahin B. Bour

Foto: Volker Lannert/Uni Bonn

Das ist ein einfaches Model für ein so genanntes Quasi-Teilchen. Verringert man nun sukzessive den Abstand der Magneten, wird die Anziehungskraft zwischen ihnen immer größer. Irgendwann ist sie so groß, dass sie die Schwerkraft überwiegt: Die beiden Magneten schnappen zusammen.

Ganz ähnlich geht es im Mikrokosmos zu. Auch kleinste Materieteilchen können miteinander in Wechselwirkung treten und dabei Quasi-Teilchen bilden. Wenn diese Wechselwirkung stark genug ist, schnappen die Teilchen ebenfalls zusammen: Sie binden aneinander.

Doch was geschieht dabei genau? Experimentell lässt sich diese Frage nur eingeschränkt beantworten. Die Wissenschaftler haben den Vorgang daher am Computer nachgestellt. In ihrer Simulation ließen sie dazu ein fremdes Teilchen – eine Verunreinigung – in einen „See“ von Neutronen eintauchen. Dabei variierten sie, wie stark das Teilchen mit den Neutronen wechselwirkte.

Widerspruch zur Theorie

Bei einer schwachen Wechselwirkung würde man lediglich erwarten, dass das fremde Teilchen die Neutronen etwas zu sich herüberzieht und so ein Quasi-Teilchen mit größerer Masse entsteht. Bei einer starken Wechselwirkung sollte das Teilchen dagegen mit einem Neutron eine Bindung eingehen – genauso, wie zwei Magneten zusammenschnappen.

„Wir haben erwartet, dass es einen scharfen Übergang gibt: Wird ein Grenzwert für die Stärke der Wechselwirkung überschritten, kommt es zur Bindung“, erklärt Dr. Shahin B. Bour vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Stattdessen haben wir festgestellt, dass dieser Übergang fließend ist: Je stärker das Teilchen mit dem Neutron wechselwirkt, desto stärker wird die Bindung zwischen ihnen.“ Dieses Verhalten widerspricht theoretischen Vorhersagen, die einen plötzlichen Übergang prognostizieren.

Die Wissenschaftler mussten für ihre Studie eigens ein neues Modellierungsverfahren entwickeln. Es fußt auf einem Algorithmus, der nicht zu Unrecht den Namen „Monte-Carlo-Simulation“ trägt. Wer seine Chancen beim Roulettespiel abschätzen möchte, kann einige Tage dem Croupier über die Schulter schauen und sich notieren, wie die Kugel fällt. Er kann das Roulettespiel jedoch auch im Computer nachbilden und dort eine virtuelle Kugel auf die Reise über die Drehscheibe schicken. Und das im Prinzip viele hunderttausend Mal.

Beim Roulette ist diese Vorgehensweise eigentlich nicht nötig. Die Gewinnchancen lassen sich schließlich ziemlich einfach berechnen – es bedarf dazu keiner Computersimulation. Wer aber beispielsweise wissen möchte, wie ein Regentropfen fällt – ob er durch die Kollision mit anderen Tropfen wächst oder schrumpft, ob er als Schneeflocke oder Hagelkorn auf dem Boden auftrifft –, der kommt um Monte-Carlo-Simulationen kaum herum.

Was passiert in Neutronensternen?

Die Fragestellung, die die Wissenschaftler mit ihrer Simulation beantworten, ist keineswegs nur von akademischem Interesse. „Ganz ähnliche Prozesse spielen sich beispielsweise in Neutronensternen ab“, betont Dr. Bour. „Wir wollen unsere Methode nutzen, um diese Vorgänge zu simulieren. So können wir genauer verstehen, was über unseren Köpfen passiert.“

Publikation: Shahin Bour, Dean Lee, H.-W. Hammer, und Ulf-G. Meißner: Ab initio lattice results for Fermi polarons in two dimensions; Physical Review Letters, Internet: http://arxiv.org/abs/1412.8175)

Kontakt für die Medien:

Dr. Shahin B. Bour
Helmholtz-Institut für
Strahlen- und Kernphysik
der Universität Bonn
Tel. 0228/733312
E-Mail: bour@hiskp.uni-bonn.de

Weitere Informationen:

http://arxiv.org/abs/1412.8175

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics