Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchen-Billard mit drei Partnern: Frankfurter Forscher lösen Rätsel um Compton-Effekt

14.04.2020

​Frankfurter Forscher lösen Rätsel um Compton-Effekt – neuer Ansatzpunkt zum Testen quantenmechanischer Theorien

Mit Licht lassen sich Elektronen aus Atomen herausschlagen, dabei prallen Lichtteilchen und Elektronen wie zwei Billardkugeln voneinander ab – der Compton-Effekt. Warum Elektronen sogar aus einem Atom herausgeschlagen werden, wenn das Licht dafür eigentlich zu wenig Energie hat, hat jetzt ein internationales Team von Physikern unter der Leitung von Wissenschaftlern der Goethe-Universität Frankfurt herausgefunden. (Nature Physics, DOI 10.1038/s41567-020-0880-2)


Schematische Darstellung des Compton-Effekts (vorne), wie er im COLTRIMS-Reaktionsmikroskop (hinten) gemessen wird. Ein Photon (geschlängelte Linie) trifft ein Elektron eines Helium-Atoms, wodurch das Elektron aus dem Atom herausgeschlagen wird (roter Punkt). Das Atom wird dadurch zum geladenen Ion (blauer Punkt). Elektrische und magnetische Felder lenken Elektron und Ion zu Detektoren (rot: Elektronendetektor, blau: Ionendetektor).

Copyright: Goethe-Universität Frankfurt


Selfie von Max Kircher vor dem COLTRIMS-Reaktionsmikroskop

Als der amerikanische Physiker Arthur Compton 1922 entdeckte, dass sich Lichtwellen wie Teilchen verhalten und in einem Stoßexperiment Elektronen aus Atomen herausschlagen können, war dies ein Meilenstein für die Quantenphysik.

Fünf Jahre später wurde der Wissenschaftler dafür mit dem Nobelpreis geehrt. Für seine Experimente nutzte Compton sehr kurzwelliges Licht mit hoher Energie, demgegenüber er die Bindungsenergie des Elektrons an den Atomkern vernachlässigen konnte.

Compton nahm daher für seine Berechnungen kurzerhand an, dass das Elektron frei im Raum ruhen würde.

In den folgenden 90 Jahren wurden bis heute zahlreiche Experimente und Berechnungen zum Compton-Effekt gemacht, die immer wieder Asymmetrien zeigten und Rätsel aufwarfen.

So wurde beobachtet, dass in bestimmten Experimenten scheinbar Energie verloren ging, wenn man die Bewegungsenergie der Elektronen und Lichtteilchen (Photonen) nach dem Zusammenstoß mit der Energie der Photonen vor dem Zusammenprall verglich.

Da Energie nicht einfach verschwinden kann, wurde vermutet, dass sich in diesen Fällen der Einfluss des Atomkerns bei dem Photon-Elektron-Zusammenprall entgegen der vereinfachenden Annahme von Compton nicht vernachlässigen lässt.

Ein Team von Physikern um Professor Reinhard Dörner und Doktorand Max Kircher von der Goethe-Universität Frankfurt hat nun erstmals bei einem Stoßexperiment mit Photonen gleichzeitig die abgelenkten Elektronen und die Bewegung des Atomkerns beobachtet.

Dazu bestrahlten sie Heliumatome mit Röntgenlicht der Röntgenstrahlungsquelle PETRA III am Hamburger Beschleunigerzentrum DESY. Die herausgelösten Elektronen und die geladenen „Atomreste“(Ionen) detektierten sie in einem COLTRIMS-Reaktionsmikroskop, einer Apparatur, die Dörner mitentwickelt hat und die ultraschnelle Reaktionsprozesse von Atomen und Molekülen sichtbar machen kann.

Die Ergebnisse waren überraschend: Die Wissenschaftler beobachteten nämlich nicht nur, dass die Energie der stoßenden Photonen natürlich erhalten bleibt und zu einem Teil auf in eine Bewegung des Atomkerns (genauer: des Ions) überführt wird. Vielmehr wird zuweilen ein Elektron sogar aus dem Atom herausgeschlagen, wenn die Energie des stoßenden Photons eigentlich zu gering ist, um die Bindungskräfte des Elektrons an den Atomkern zu überwinden.

Insgesamt wurde nur in zwei Dritteln der Fälle das Elektron dorthin gestoßen, wo man es bei einem Billard-Stoßexperiment erwarten würde. In allen anderen Fällen wurde das Elektron quasi vom Kern reflektiert und teilweise sogar in die entgegengesetzte Richtung gelenkt.

Reinhard Dörner: „Wir konnten damit zeigen, dass das ganze System aus Photon, herausgeschlagenem Elektron und Ion nach quantenmechanischen Gesetzen schwingt. Unsere Experimente liefern damit einen neuen Ansatzpunkt zum experimentellen Testen quantenmechanischer Theorien des Compton Effekts, der zum Beispiel in der Astrophysik oder der Röntgenphysik eine wichtige Rolle spielt.“

Wissenschaftliche Ansprechpartner:

Professor Reinhard Dörner
Institut für Kernphysik
Goethe-Universität Frankfurt
Max-von-Laue-Strasse 1
60438 Frankfurt
Telefon +49 (0)69 798 47003
doerner@atom.uni-frankfurt.de
http://www.atom.uni-frankfurt.de

Originalpublikation:

Kinematically complete experimental study of Compton scattering at helium atoms near the ionization threshold. Max Kircher et. al. Nature Physics, DOI 10.1038/s41567-020-0880-2; https://www.nature.com/articles/s41567-020-0880-2

Weitere Informationen:

http://www.uni-frankfurt.de/87402622 DownloadGrafik: Schematische Darstellung des Compton-Effekts (vorne), wie er im COLTRIMS-Reaktionsmikroskop (hinten) gemessen wird. Ein Photon (geschlängelte Linie) trifft ein Elektron eines Helium-Atoms, wodurch das Elektron aus dem Atom herausgeschlagen wird (roter Punkt). Das Atom wird dadurch zum geladenen Ion (blauer Punkt). Elektrische und magnetische Felder lenken Elektron und Ion zu Detektoren (rot: Elektronendetektor, blau: Ionendetektor).

Markus Bernards | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.muk.uni-frankfurt.de/87410745/Teilchen_Billard_mit_drei_Partnern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erster radioastronomischer Nachweis eines extrasolaren Planetensystems um einen Hauptreihenstern
05.08.2020 | Max-Planck-Institut für Radioastronomie

nachricht Atome beim Fotoshooting
03.08.2020 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics