Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Synchrone Quantensprünge bei Elektronen-Einfang in hochgeladene Ionen

29.09.2011
Rekombination, der Einfang eines Elektrons in ein Ion, ist ein fundamentaler atomarer Prozess mit hoher Relevanz für Plasmaphysik und Astrophysik.
Dabei kann die freigesetzte Energie auf gebundene Elektronen des Ions resonant übertragen werden. Forscher des Heidelberger Max-Planck-Instituts für Kernphysik haben in theoretischen und experimentellen Studien gezeigt, dass dieser Prozess in einigen Fällen effizienter erfolgt, wenn statt zwei, etwa drei oder gar vier Elektronen daran beteiligt sind.

Abb. 1: Schema der di- (a) und trielektronischen (b) Rekombination in kohlenstoffartigen Ionen (sechs Elektronen plus das eingefangene). K und L bezeichnen die beteiligten elektronischen Schalen des Ions. Grafik: MPI für Kernphysik


Abb. 2: Relative Stärke der tri- zur dielektronischen Rekombination in Abhängigkeit der atomaren Ordnungszahl (Kernladung) für kohlenstoffartige Ionen (Ar12+, Fe20+, Kr30+). Unterhalb von Z ≈ 20 überwiegt der trielektronische Prozess. Grafik: MPI für Kernphysik

(Phys. Rev. Lett. 29.09.2011 online)

Hochgeladene Ionen sind hungrig nach Elektronen, da ihnen viele davon fehlen. Sie kommen nur in sehr heißen Umgebungen bis zu einigen Millionen Grad vor, z. B. im Kosmos im Inneren von Sternen oder deren Atmosphären, in Sternexplosionen oder in der Umgebung dessen, was davon übrig bleibt – Neutronensterne oder Schwarze Löcher – wenn diese Materie ansaugen. Sie bevölkern aber auch heiße technische Plasmen, wie sie z. B. in Fusionsexperimenten vorliegen. Sie tragen dort zu Kühlmechanismen bei, die für die Kontrolle des Plasmas wichtig sind. Trifft nämlich ein schnelles Elektron aus dem Plasma auf ein Ion, so kann es von diesem unter Aussendung eines Röntgenphotons eingefangen werden (radiative Rekombination). Dem Plasma gehen also schnelle geladene Teilchen, die magnetisch eingefangen werden können, verloren und es kühlt sich ab, während die neutralen Röntgenquanten das dünne Plasma praktisch ungehindert verlassen können. Für die Steuerung der Plasmatemperatur sind daher Kenntnisse des Rekombinationsverhaltens von hochgeladenen Ionen von großer Wichtigkeit.

Neben dem rein radiativen Einfang besteht auch die Möglichkeit, dass beim Einfang die freigesetzte Energie auf ein gebundenes Elektron übertragen und dieses in einen höheren Zustand angeregt wird. Die ist genau dann möglich wenn die Anregungsenergie dieses Quantensprungs der Summe von Bewegungs- und Bindungsenergie des eingefangenen Elektrons entspricht – man spricht hier von einem resonanten Prozess, der dielektronischen Rekombination, da zwei Elektronen daran teilnehmen (Abb. 1a). Etwa vorhandene weitere gebundene Elektronen spielen die Rolle eines Zuschauers. Beim Rücksprung kann ein Röntgenquant freigesetzt werden – das Ion stabilisiert sich auf diese Weise und behält seine um eine Einheit verringerte Ladung. Zugleich wird das Plasma wie bei der radiativen Rekombination gekühlt.

Nun ist es auch denkbar, dass mehr als zwei Elektron bei dieser Quantenspringerei mitspielen, und dies wurde in neueren Experimenten auch für bis zu vier Elektronen beobachtet: tri- (Abb. 1b) und quadruelektronische Rekombination. Es entspricht durchaus der Erwartung, dass die Prozesse höherer Ordnung, die mehrere Elektronen einbeziehen, unwahrscheinlicher sind. Rechnungen von Zoltán Harman aus der Abteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik ergaben aber, dass die Stärke der mehrelektronischen Rekombination hin zu leichteren Elementen stark zunimmt. Dieser systematische Trend sagt sogar voraus, dass für leichtere kohlenstoffartige Ionen dielektronische Rekombination von der trielektronischen übertroffen wird (Abb. 2).

Diese einigermaßen überraschende Vorhersage wurde nun am gleichen Institut durch neue Messungen der Gruppe um José Crespo in der Abteilung von Joachim Ullrich am Beispiel kohlenstoffartiger Eisen-, Krypton- und Argonionen eindrucksvoll bestätigt (Abb 2). Die Ionen werden hierzu in einer Elektronstrahl-Ionenfalle (EBIT) erzeugt und ihre Röntgenemission in Abhängigkeit von der Elektronenenergie untersucht. Die erwähnten Rekombinationsprozesse zeigen sich dabei als Resonanzen, also einer erhöhten Ausbeute an Röntgenstrahlung bei einer bestimmten Elektronenenergie.

„Es ist eine Art Wettbewerb“, erklärt Zoltán Harman. „Zwar ist die Anregung mehrerer Elektronen beim Einfang unwahrscheinlicher, dafür hat ein so mehrfach angeregtes Ion mehr Möglichkeiten, sich durch Röntgenemission zu stabilisieren.“ Dieser Effekt überwiegt letztlich und ist in der Theorie direkt nachvollziehbar, da die einzelnen Schritte des Prozesses separat analysiert werden können, was im Experiment nicht ohne weiteres möglich ist. Die Ergebnisse demonstrieren auch, wie fruchtbar eine Zusammenarbeit von Theorie und Experiment auf diesem Gebiet ist. Als nächsten Schritt wollen die Forscher untersuchen, wie sich der Trend zu leichteren Elementen fortsetzt. Die Daten für Silicium sind bereits gemessen und werden derzeit ausgewertet.

Originalveröffentlichung:

C. Beilmann, P. H. Mokler, S. Bernitt, C. H. Keitel, J. Ullrich, J. R. Crespo López-Urrutia and Z. Harman:
Prominent Higher-Order Contributions to Electronic Recombination,
Physical Review Letters, 107, 143201 (2011)
doi: 10.1103/PhysRevLett.107.143201

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de/ullrich/page.php?id=36
http://www.mpi-hd.mpg.de/keitel/harman/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe
11.12.2018 | Technische Universität Wien

nachricht Neue Methode verpasst Mikroskop einen Auflösungsschub
10.12.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics