Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung und Magnetismus - Von Rivalen zu Partnern

12.09.2008
Die wilde Quantenwelt produziert Zustände, die in der klassischen Physiklehre nicht vorgesehen sind. Ein erstaunlicher neuartiger Zustand wird in der heutigen Ausgabe des Magazins "Science" von einem internationalen Wissenschaftlerteam um den Physiker Michel Kenzelmann vom Paul Scherrer Institut vorgestellt.

Die Experimente wurden an der Schweizer Spallations-Neutronenquelle (SINQ) des Paul Scherrer Instituts PSI durchgeführt. Mit dem Neutronenstrahl der SINQ ist es möglich auf mikroskopischer Ebene die inneren Eigenschaften von Materialien zu untersuchen, ohne sie dabei zu zerstören. Mit dieser Methode lassen sich Vorgänge beobachten, die sonst mit keiner anderen Technik zu sehen sind.

In Zer-Kobalt-Indium verbrüdern sich Supraleitung und Magnetismus

Dem Forscherteam gelang eine überraschende Entdeckung. Sie stellten fest, dass das untersuchte Material sich magnetisch ordnet, aber nur solange es supraleitend ist. Dieses Ergebnis ist verblüffend, da diese beiden Phänome normalerweise miteinander konkurrieren und sich in einem Material gegenseitig zu verdrängen suchen, hier aber offenbar nur gemeinsam existieren können.

Wechselwirkung zwischen Magnetismus und Supraleitung

In elektrischen Leitern wird Strom von Elektronen transportiert. Dabei kommt es zu einem Verlust von Energie, sobald die Elektronen mit den positiven Kristallionen des Leiters zusammenstossen und dadurch von ihrer optimalen Bahn abgelenkt werden. Der verlustfreie Transport von Strom in Supraleitern beruht darauf, dass sich die Elektronen bei tiefen Temperaturen zu sogenannten "Cooper-Paaren" zusammenschliessen. Diese Elektronenpaare haben ganz andere Eigenschaften als einzelne Elektronen und verhalten sich völlig anders; sie gehen in einen neuen Quantenzustand über. Dieser Zustand erlaubt den Cooper-Paaren, sich gegenseitig "abzusprechen" um Zusammenstösse zu vermeiden. Dadurch ist ein verlustfreier Stromtransport möglich.

Elektronen besitzen ein magnetisches Moment, das man sich wie eine Art Kompassnadel vorstellen muss. In einem Cooper-Paar zeigen die "Kompassnadeln" der beiden Elektronen generell immer in die exakt gegenüberliegende Richtung und heben ihren Magnetismus dadurch auf. Wird in diesem supraleitenden Zustand ein Magnetfeld angelegt geraten die magnetischen Momente des Elektronenpaars in Bedrängnis. Dies geschieht einerseits dadurch, dass das Magnetfeld Ströme induziert, die die Cooper-Paare aufbrechen und andererseits auch weil das Magnetfeld seine magnetische Ordnung auf die magnetischen Momente des Cooper-Paares überträgt. Gelingt dies dem Magnetfeld löst sich das Cooper-Paar auf und der elektrische Leiter verliert seinen supraleitenden Zustand. Auf diese Art rivalisieren magnetische Ordnung und Supraleitung in vielen Materialien um die Vorherrschaft.

Laut Kenzelmann, Wissenschaftler am PSI und Professor an der ETH Zürich, schliessen magnetische Ordnung und Supraleitung sich zwar nicht immer gegenseitig aus, dulden sich aber höchstens. "Supraleitung und magnetische Ordnung verhalten sich in allen bisher bekannten Materialen wie zwei Rivalen, die um dasselbe Revier kämpfen und den jeweils anderen auszuschalten suchen."

Supraleitung induziert magnetische Ordnung

In ihrem Experiment kühlten die Forscher einen Einkristall bestehend aus den Elementen Zer, Kobalt und Indium (CeCoIn5) auf auf minus 273,1 Grad Celsius ab. Bei derartig tiefen Temperaturen hören alle atomaren Bewegungen des Kristalls auf und die durchfliessenden Elektronen können sich zu sich zu Cooper-Paaren zusammenschliessen. Dadurch wird der supraleitende, elektrisch widerstandsfreie Zustand erreicht, der es ermöglicht, den Strom verlustfrei zu transportieren. Anschliessend wurde das Material magnetischen Feldern ausgesetzt.

Dabei haben die Forscher festgestellt, dass bei hohen magnetischen Feldern ein neuartiger supraleitender Zustand auftritt, der von magnetischer Ordnung begleitet und nicht zerstört wird. Zwar hat man die Koexistenz von magnetischer Ordnung und Supraleitung schon in anderen Fällen beobachtet. Der neue Aspekt in dieser Zer-Verbindung ist jedoch die Tatsache, dass die magnetische Ordnung nur während der supraleitenden Phase auftritt und zusammen mit dieser bei noch höheren magnetischen Feldern im Wesentlichen wieder spurlos verschwindet. Diese Beobachtung legt nahe, dass hier überraschenderweise der Magnetismus von der Supraleitung begünstigt und stabilisiert wird.

"Unsere Ergebnisse zeigen ganz eindeutig, dass die Supraleitung für das Entstehen dieses Magnetismus entscheidend ist. Die Studie wird helfen genauer zu verstehen, wie sich die Elektronenpaare in magnetischen Supraleitern überhaupt bilden. Wir hoffen, dass dieses Wissen dann zukünftig für technologische Anwendungen genutzt werden kann", erklärt Kenzelmann.

Literaturhinweis:
M. Kenzelmann et al.;Coupled Superconducting and Magnetic Order in CeCoIn5; Science, Vol 321, 12 Sept. 2008
Für weitere Auskünfte:
Prof. Dr. Michel Kenzelmann,
Labor für Methoden und Entwicklung,
Paul Scherrer Insitut,
Telefon +41 (0)56 310 53 81,
michel.kenzelmann@psi.ch

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics