Superharte Fenster aus transparenter Keramik

Ein etwa zwei Millimeter großes Fenster aus durchsichtigem Siliziumnitrid, produziert bei DESY. Bild: Norimasa Nishiyama, DESY/Tokyo Tech

Forscher haben bei DESY ein superhartes Fenster aus einer weit verbreiteten Industriekeramik hergestellt. Es ist das erste durchsichtige Werkstück aus Siliziumnitrid, wie das japanisch-deutsche Team im Fachblatt „Scientific Reports“ berichtet.

Fenster aus diesem sogenannten kubischen Siliziumnitrid könnten unter extremen Bedingungen verwendet werden wie sie etwa in Motoren herrschen. Kubisches Siliziumnitrid (c-Si3N4) bildet sich unter hohem Druck und ist die zweithärteste Nanokeramik nach Diamant, kann aber wesentlich höheren Temperaturen standhalten.

„Siliziumnitrid ist eine sehr beliebte Keramik in der Industrie“, erläutert DESY-Forschungsleiter Dr. Norimasa Nishiyama, der inzwischen außerordentlicher Professor am Tokyo Institute of Technology ist. „Es wird vor allem für Kugellager, Schneidwerkzeuge und Motorteile in der Auto- und Flugzeugindustrie verwendet.“ Der keramische Werkstoff ist extrem stabil, da die Silizium-Stickstoff-Bindung sehr stark ist.

Unter Normalbedingungen besitzt Siliziumnitrid eine hexagonale Kristallstruktur, und gesinterte Werkstücke aus diesem Material sind nicht durchsichtig. Sintern bezeichnet das Heißpressen eines pulverförmigen Ausgangsmaterials zu makroskopischen Werkstücken und ist eine weit verbreitete Technik zur Herstellung einer großen Produktpalette von reibungsarmen keramischen Lagern bis zu Zahnersatz.

Bei einem Druck von mehr als 13 Gigapascal (GPa), das entspricht dem 130 000-fachen Atmosphärendruck, verändert sich die Kristallstruktur von Siliziumnitrid zu einer kubischen Symmetrie, die Experten als Spinell-Typ bezeichnen. Der namensgebende Spinell (MgAl2O4) ist nicht nur ein beliebter Edelstein, in künstlicher Form findet das keramische Material ebenfalls breite Anwendung in der Industrie.

„Die kubische Variante von Siliziumnitrid ist erstmals 1999 von einer Forschergruppe an der TU Darmstadt erzeugt worden, aber das Wissen über dieses Material ist noch sehr begrenzt“, sagt Nishiyama. Sein Team nutzte eine Hochdruckpresse bei DESY, um hexagonales Siliziumnitrid hohem Druck und hohen Temperaturen auszusetzen.

Bei 15,6 Gigapascal, also rund dem 156 000-fachen Atmosphärendruck, und 1800 Grad Celsius entstand ein durchsichtiges Stück kubisches Siliziumnitrid mit einem Durchmesser von ungefähr zwei Millimetern. „Es handelt sich um die erste transparente Probe dieses Materials“, betont Nishiyama.

Die Analyse der Kristallstruktur an DESYs Röntgenlichtquelle PETRA III zeigte, dass sich das anfangs hexagonale Siliziumnitrid vollständig in die kubische Form umgewandelt hatte. „Die Transformation gleicht der von Kohlenstoff, der ebenfalls eine hexagonale Struktur bei Normalbedingungen besitzt und sich unter Hochdruck in eine kubische Variante namens Diamant umwandelt“, erläutert Nishiyama. „Allerdings hängt die Transparenz von Siliziumnitrid stark von den Korngrenzen ab. Die Undurchsichtigkeit entsteht durch Lücken und Poren zwischen den einzelnen Körnchen.“

Untersuchungen mit einem Transmissions-Rasterelektronenmikroskop an der Universität Tokio zeigten, dass die Hochdruck-Probe des Materials nur sehr dünne Korngrenzen besitzt. „Außerdem verteilen sich in der Hochdruck-Phase Sauerstoff-Verunreinigungen in dem gesamten Material und sammeln sich nicht wie unter Normalbedingungen an den Korngrenzen. Das ist entscheidend für die Transparenz“, sagt Nishiyama.

„Das kubische Siliziumnitrid ist die härteste und zäheste transparente Spinell-Keramik, die je erzeugt wurde“, fasst Nishiyama zusammen. Die Wissenschaftler sehen verschiedene industrielle Anwendungen für ihre superharten Fenster. „Kubisches Siliziumnitrid ist die dritthärteste Keramik, die wir kennen, nach Diamant und kubischem Bornitrid“, erläutert Nishiyama. „Borverbindungen sind jedoch nicht transparent, und Diamant ist an der Luft nur bis etwa 750 Grad Celsius stabil. Kubisches Siliziumnitrid dagegen ist transparent und bis 1400 Grad Celsius stabil.“

Wegen des zur Herstellung nötigen hohen Drucks ist die Fenstergröße allerdings aus praktischen Gründen begrenzt. „Das Rohmaterial ist billig, aber für die Produktion transparenter Werkstücke benötigen wir etwa doppelt so viel Druck wie für künstlichen Diamant“, sagt Nishiyama. „Es ist relativ einfach, Fenster mit einem Durchmesser von einem bis fünf Millimeter herzustellen. Aber alles über einem Zentimeter wird schwer zu erreichen sein.“

An der Studie waren auch das Tokyo Institute of Technology, die Universitäten Ehime, Bayreuth und Hirosaki sowie das Japanische Institut für Materialwissenschaften beteiligt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
Transparent polycrystalline cubic silicon nitride; Norimasa Nishiyama et al.; „Scientific Reports“, 2017; DOI: 10.1038/srep44755

Wissenschaftlicher Ansprechpartner
Prof. Norimasa Nishiyama
DESY/Tokyo Institute of Technology
Tel. +81 45 924 5337
nishiyama.n.ae@m.titech.ac.jp

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1200&am… – Text und Bildmaterial im Web

Media Contact

Dr. Thomas Zoufal idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer