Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sudoku für das Kernmodell - Wissenschaftler entschlüsseln Zerfallsschema von Zinn-100 bei GSI

21.06.2012
Wie entstehen schwere Elemente im Universum? Für die Beantwortung dieser Frage ist eine genaue Vorstellung vom Aufbau der Atomkerne unverzichtbar.
Ein internationales Team von Wissenschaftlern hat nun mit einem Experiment an der GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt das Zerfallsschema des seltenen instabilen Zinn-Isotops Zinn-100 entschlüsselt. Die im renommierten Fachmagazin Nature veröffentlichten Ergebnisse helfen, das Kernstruktur-Modell zu verbessern und zu erweitern.

Mit Modellen können Wissenschaftler Vorgänge im Universum erklären und vorhersagen, die sich nicht direkt messen oder beobachten lassen. Je genauer dabei das Modell ist, umso verlässlicher die Erklärungen. Die Einblicke, die das Zerfallsschema von Zinn-100 in die Struktur von Atomkernen gibt, machen bessere Modellvorhersagen für instabile Isotope möglich.

Die Wissenschaftler haben beim Zerfall des Zinn-100-Kerns die frei werdende Energie gemessen, die stufenweise über Kaskaden abgegeben wird. Herauszufinden wie diese Kaskaden verlaufen, ist wie eine Knobelaufgabe. „Bei einem Zerfallsschema gibt es genauso viele Möglichkeiten wie bei einem schwierigen Sudoku-Rätsel“, sagt Jürgen Gerl, Leiter der Forschungsabteilung für Gamma-Spektroskopie bei GSI. „Wir haben einige Kästchen vorgegeben, aber den Rest müssen wir richtig kombinieren. Und ist eine Zahl falsch, stimmt das gesamte Ergebnis nicht.“

Nach intensiver Datenauswertung blieb nur eine Möglichkeit übrig: Anstatt wie ursprünglich vermutet in einer Zerfallskaskade, zerfällt Zinn-100 in zwei parallelen Kaskaden. Dabei findet ein sogenannter „superallowed Gamow-Teller-Übergang“ statt, ein energetisch besonders günstiger Übergang. „Gamow-Teller-Übergänge spielen eine wesentliche Rolle in Kernreaktionen, die in Sternexplosionen, so genannten Supernovae, ablaufen. In Supernovae entstehen die schweren Elemente jenseits des Eisens“, sagt Magdalena Górska, Wissenschaftlerin bei GSI und stellvertretende Sprecherin des Experiments.

Der Zinn-100-Kern ist bei Physikern für die Erforschung der Kernstruktur besonders begehrt. Er besteht aus 50 Protonen und 50 Neutronen, die jeweils abgeschlossene Schalen bilden und somit für eine besondere Stabilität sorgen. Ähnlich wie Elektronen in der Atomhülle von Edelgasen. Zinn-100 ist der schwerste Atomkern mit zwei abgeschlossenen Schalen, der dabei ebenso viele Protonen wie Neutronen besitzt. Seine innere Struktur ist im Vergleich zu anderen Atomkernen relativ einfach. Deshalb ist er besonders geeignet, um bestehende Modelle zu überprüfen und zu verbessern.

Die Herstellung des für die Wissenschaftler so begehrten Forschungsobjekts ist nur mit großem technischem Aufwand möglich. In der mehreren hundert Meter langen Beschleunigeranlage bei GSI werden Ionen fast auf Lichtgeschwindigkeit beschleunigt und auf Materie geschossen. Dabei entsteht in sehr seltenen Fällen ein Zinn-100 Kern. Der erste Zinn-100-Kern überhaupt wurde an der GSI-Beschleunigeranlage im Jahr 1994 hergestellt und nachgewiesen. Da der Teilchenbeschleuniger bei GSI mittlerweile jedoch höhere Intensitäten hat, können mehr Zinn-100-Kerne hergestellt werden. Für das Experiment standen somit mehr als 200 Zinn-100-Kerne zur Verfügung – genug, um verlässliche Ergebnisse zu bekommen.

Mit der Beschleunigeranlage FAIR, die gerade bei GSI gebaut wird, soll bis 2018 die Produktionsrate für Zinn-100 und viele andere seltene Isotope um bis zu 10.000fach erhöht werden. Damit erhoffen sich die Wissenschaftler eine so große Präzision der Messergebnisse, dass die Modelle zur Beschreibung der Struktur der Atomkerne wesentlich verbessert werden und damit das Verständnis über die Entstehung der Elemente im Universum.

Autoren des Artikels sind 62 Wissenschaftler aus 14 Ländern von 21 Instituten. Die Leitung lag bei der TU München.

Kontakt für Presseanfragen:
Dr. Ingo Peter
Tel: +49-6159-71-1397
E-Mail: i.peter(at)gsi.de

Originalveröffentlichung: „Superallowed Gamow-Teller Decay of the Doubly Magic Nucleus Sn-100“, Christoph B. Hinke et al., Nature, 20. Juni 2012 – DOI: 10.1038/nature11116

http://www.nature.com/nature/journal/v486/n7403/full/nature11116.html

Dr. Ingo Peter | idw
Weitere Informationen:
http://www.gsi.de
http://www.gsi.de/start/aktuelles/detailseite/datum/2012/06/21/sudoku-fuer-das-kernmodell.htm
http://www.nature.com/nature/journal/v486/n7403/full/nature11116.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmaterie fest und supraflüssig zugleich
23.04.2019 | Universität Innsbruck

nachricht Radioteleskop LOFAR blickt tief in den Blitz
18.04.2019 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenmaterie fest und supraflüssig zugleich

Forscher um Francesca Ferlaino an der Universität Innsbruck und an der Österreichischen Akademie der Wissenschaften haben in dipolaren Quantengasen aus Erbium- und Dysprosiumatomen suprasolide Zustände beobachtet. Im Dysprosiumgas ist dieser exotische Materiezustand außerordentlich langlebig, was die Tür für eingehendere Untersuchungen weit aufstößt.

Suprasolidität ist ein paradoxer Zustand, in dem die Materie sowohl supraflüssige als auch kristalline Eigenschaften besitzt. Die Teilchen sind wie in einem...

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Neues „Baustein-Konzept“ für die additive Fertigung

Volkswagenstiftung fördert Wissenschaftler aus dem IPF Dresden bei der Erkundung eines innovativen neuen Ansatzes im 3D-Druck

Im Rahmen Ihrer Initiative „Experiment! - Auf der Suche nach gewagten Forschungsideen“
fördert die VolkswagenStiftung ein Projekt, das von Herrn Dr. Julian...

Im Focus: Vergangenheit trifft Zukunft

autartec®-Haus am Fuß der F60 fertiggestellt

Der Hafen des Bergheider Sees beherbergt seinen ersten Bewohner. Das schwimmende autartec®-Haus – entstanden im Rahmen eines vom Bundesministerium für Bildung...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz: Lernen von der Natur

17.04.2019 | Veranstaltungen

Mobilität im Umbruch – Conference on Future Automotive Technology, 7.-8. Mai 2019, Fürstenfeldbruck

17.04.2019 | Veranstaltungen

Augmented Reality und Softwareentwicklung: 33. Industrie-Tag InformationsTechnologie (IT)²

17.04.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Quantenmaterie fest und supraflüssig zugleich

23.04.2019 | Physik Astronomie

Feldversuch mit Neonicotinoiden: Honigbienen sind deutlich robuster als Hummeln

23.04.2019 | Biowissenschaften Chemie

Brustkrebs-Antikörper einfach und schnell radioaktiv markieren

23.04.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics