Auf der Suche nach Neutrinos: RUB-Physiker unterstützen IceCube-Team mit physikalischen Modellen

Kosmische Strahlung: Geladene Teilchen, die mit hoher Geschwindigkeit durchs Weltall fliegen, bringen die Erdatmosphäre zum Leuchten, wenn sie mit ihr wechselwirken. Es entstehen Polarlichter.<br>Foto: Jens Dreyer<br>

Unaufhörlich prasseln geladene Teilchen aus dem Weltall von allen Seiten auf unseren Planeten. Wo diese kosmische Strahlung herkommt, ist unklar. Mit dem Neutrinodetektor IceCube am Südpol testet ein internationales Forscherteam, welche Himmelsobjekte die kosmische Strahlung aussenden.

Hauptkandidaten waren die sehr energiereichen Gammastrahlenausbrüche. In Nature berichten die Forscher jetzt, dass die gemessenen Daten diese Theorie nicht bestätigen. „Wir sind auf dem besten Weg, Gammastrahlenausbrüche als Quellen der kosmischen Strahlung auszuschließen“, sagt Juniorprofessorin Julia Becker von der Ruhr-Universität. Ihr Team vom Lehrstuhl für Theoretische Physik IV unterstützt die Suche nach dem Ursprung des Teilchenbombardements mit physikalischen Modellen.

Kosmische Strahlung auf Abwegen

Kosmische Strahlung besteht aus Elektronen, Protonen und anderen Atomkernen, die mit hoher Geschwindigkeit durchs All fliegen. Magnetfelder lenken sie ab, so dass die Teilchen nicht auf gerader Bahn zur Erde gelangen. Das macht es schwer, ihre Quelle zu identifizieren. Dort, wo die kosmische Strahlung entsteht, bilden sich aber auch elektrisch neutrale Teilchen, die sogenannten Neutrinos, die nicht von Magnetfeldern abgelenkt werden. Finden die Forscher also die Neutrinoquellen, kennen sie auch den Ursprung der kosmischen Strahlung. Zu diesem Zweck wurde 2010 der Neutrinodetektor „IceCube“ fertiggestellt. RUB-Forscher Jens Dreyer war am Südpol, als das geschah (wir berichteten im Januar 2011: http://aktuell.ruhr-uni-bochum.de/pm2011/pm00017.html.de).

Gammastrahlenausbruch statt Atomtest

Beckers Team berechnet, welche astrophysikalischen Quellen am besten geeignet sind, Neutrinos zu produzieren. Ein heißer Kandidat: die Gammastrahlenausbrüche. Wenn schwere Sterne in einer Supernova enden, stoßen sie einen Großteil ihrer Masse aus. Manchmal werden zusätzlich noch zwei große Materieströme in entgegengesetzte Richtungen geschleudert – ein Gammastrahlenausbruch findet statt. Dabei entstehen hochenergetische Photonen, die einen Teil des Himmels für etwa zehn Sekunden aufleuchten lassen. „Gammastrahlenausbrüche wurden zum ersten Mal in den 60er Jahren von militärischen Satelliten entdeckt. Eigentlich war es deren Aufgabe, Atomwaffentests auf der gegnerischen Seite zu finden“, erzählt Becker.

Kollision von Photonen und geladenen Teilchen

„Bei Gammastrahlenausbrüchen wird extrem viel Energie frei und ein Teil dieser Energie könnte in die kosmische Strahlung gehen“, sagt die RUB-Physikerin. Wenn die kosmische Strahlung tatsächlich so entsteht, würde sie mit den Photonen der Gammastrahlenausbrüche wechselwirken und dabei Neutrinos erzeugen. Theoretische Berechnungen ergeben, dass der daraus resultierende Neutrinofluss groß genug wäre, um von IceCube detektiert zu werden. Die RUB-Forscher trugen in langjähriger Arbeit im IceCube-Projekt dazu bei, die Analyse der Daten speziell für Gammastrahlenausbrüche zu optimieren.

Weniger Neutrinos als erwartet

Doch IceCube fand keine Neutrinos, die mit Gammastrahlenausbrüchen zusammenhängen. „Das bedeutet, dass unser Modell in der jetzigen Form nicht stimmen kann“, resümiert Becker. Zwei Interpretationen der Ergebnisse sind denkbar: Entweder die Annahme, dass die kosmische Strahlung aus den Gammastrahlenausbrüchen stammt, ist falsch. Oder das Modell repräsentiert die Umgebung, in der kosmische Strahlung und Photonen wechselwirken, nicht exakt genug. „Wir können an dieser Stelle zwar noch nicht mit absoluter Sicherheit ausschließen, dass Gammastrahlenausbrüche die Quelle der kosmischen Strahlung sind“, sagt die Forscherin. „Das werden erst die nächsten Jahre mit IceCube eindeutig zeigen.“ Am Lehrstuhl für Theoretische Physik IV ist Martino Olivo für eine Nachfolgeanalyse zuständig. Mit einem erweiterten Datensatz von IceCube soll das aktuelle Ergebnis bestätigt werden.

Titelaufnahme

IceCube collaboration (2012): An absence of neutrinos associated with cosmic-ray acceleration in gamma-ray bursts, Nature, doi: 10.1038/nature11068

Weitere Informationen

Prof. Dr. Julia Becker, Hochenergie Astroteilchenphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-23779
Julia.Becker@rub.de

Angeklickt

Hochenergie-Astroteilchenphysik an der RUB
http://www.tp4.rub.de/hat/de/index.html

Webseite des IceCube-Projekts
http://icecube.wisc.edu/

Redaktion
Dr. Julia Weiler

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Methode zur Isolierung von HIV-Partikeln entwickelt

Forschende der Universitäten Leipzig und Ulm haben eine neue Methode entwickelt, um HIV leichter aus Proben zu isolieren und damit potenziell eine Infektion mit dem Virus besser feststellen zu können….

Neues topologisches Metamaterial verstärkt Schallwellen exponentiell

Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise ausbreiten können. Das Metamaterial…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Partner & Förderer