Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker entwickeln neuartige nano-optische Struktur zur Brechung der Zeitumkehr

25.03.2013
Hauchdünne Goldstrukturen statt große Faraday-Isolatoren

Forscher der Universität Stuttgart haben eine neuartige Nanostruktur entwickelt, die das physikalische Phänomen der Zeitumkehr bricht. Dr. Jessie Chin und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die auf elegante Art den sogenannten Faraday-Effekt vergrößert, in der Fachzeitschrift „Nature Communications“ vor.*)


Aufbau und Geometrie des Dünnfilm-Faradayrotators. Die Magnetfeldspulen sind um die Probe herum angeordnet. Der rote Pfeil stellt das Magnetfeld dar. Erkennbar sind Gold-Nanodrähte in Gelb und die magneto-optische Dünnfilmschicht in Rot. Die elektromagnetische Lichtwelle ist in blau gezeigt. Bild: Universität Stuttgart

Die Struktur, die Gold-Nanomaterialien mit magneto-optischen Dünnschichten kombiniert, könnte einmal in optischen Glasfaser-Kommunikationsnetzen eingesetzt werden oder auch neuartige großflächige optische Beschichtungen ermöglichen.

Wenn sich Licht als elektromagnetische Welle in Materie ausbreitet, schwingt sein elektrisches Feld in einer ganz bestimmten Polarisationsrichtung. Michael Faraday entdeckte 1845, dass Materialien wie Glas oder bestimmte Kristalle diese Richtung drehen können, wenn man von außen ein starkes Magnetfeld entlang der Lichtausbreitungsrichtung anlegt. Je größer das Magnetfeld, desto stärker wird die Polarisationsrichtung gedreht ˗̶ über eine Strecke von mehreren Zentimetern um bis zu 45 Grad. Dieser Effekt wird noch einmal verdoppelt, wenn man hinter dem Kristall einen Spiegel aufstellt, der das Licht durch den Kristall wieder zurücksendet.

Man kann auf diese Art eine Polarisationsdrehung um 90 Grad erreichen und mit einem Polarisationsfilter das reflektierte Licht herausfiltern. Dies nennt man dann optische Isolation. Der Effekt hängt davon ab, in welche Richtung man sich durch den Kristall bewegt. Da ein Magnetfeld eine ausgezeichnete Richtung durch seinen Nordpol und seinen Südpol vorgibt, sagt man, der Effekt breche die Zeitumkehr. Man kann sich dabei vorstellen, dass Licht rückwärts läuft, wenn man die Zeitumkehr einschaltet.

Durch das äußere Magnetfeld kann das Licht aber genau die Richtung unterscheiden, in die es läuft. Dadurch wird die Polarisationsdrehung vorgegeben, unabhängig davon ob das Licht vor oder zurück läuft. Dies steht im Gegensatz zur Schulbuch-Physik zur „optischen Aktivität“ in einer Zuckerlösung, bei der das Licht nicht unterscheiden kann, in welche Richtung es läuft.

Nur 1/10.000 Millimeter groß
Die besten momentan vorhandenen Kristalle für die optische Isolation benötigen Magnetfelder mit einer Flussdichte von mehreren Tesla und sind einige Zentimeter dick. Der neue Stuttgarter Ansatz kombiniert dagegen hauchdünne Gold-Nanostrukturen und magneto-optische Materialien aus Yttrium-Eisen-Aluminiumoxid, wie sie in der Computertechnologie verwendet werden. Die Goldstrukturen, die nur 1/10.000 Millimeter groß sind, konzentrieren dabei das Licht in dem ähnlich dünnen magneto-optischen Film. Dadurch konnten Chin und Giessen die gesamte Struktur auf den Bruchteil eines Millimeters reduzieren und Drehungen im Bereich von einem Grad erreichen. Das magneto-optische Material wurde von Spezialisten der Universität Augsburg aus der Gruppe von Prof. Bernd Stritzker mittels Laserstrahlverdampfen hergestellt.

Dr. Jessie Chin sieht Anwendungsmöglichkeiten vor allem im Bereich der optischen Datenkommunikation für Glasfasern, wo die bisherigen großen Faraday-Isolatoren ein wesentlicher Kostenfaktor sind. Aber auch großflächige Beschichtungen wären möglich, zum Beispiel auf Linsen. Das wäre eine ganz neue Art, um Reflexe in optischen Systemen zu eliminieren. Um einen industrietauglichen Dünnfilm-Faraday-Isolator zu verwirklichen, besteht allerdings noch Forschungs- und Entwicklungsbedarf“, so Prof. Harald Giessen. Optimierungsmöglichkeiten bestehen bei den Materialien und beim geschickten Design der Nanogeometrie.

*) Referenz: J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin film Faraday rotation”,Nature Communications 4, 1599 (2013). http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Kontakt: Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-65111, E-Mail: Giessen (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics