Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strahlenschäden: Die gefährliche Spur langsamer Elektronen

23.03.2016

Details zum Mechanismus, mit dem Elektronenstöße Moleküle sprengen, vertiefen das Verständnis, wie Radioaktivität biologischen Zellen zusetzt

Wie Radioaktivität biologische Zellen schädigt, wissen Forscher nur zum Teil. Im Fokus aktueller Untersuchungen steht die Wirkung so genannter Sekundärteilchen. Dringt Strahlung in den Körper ein, schlägt sie Elektronen aus biologischen Molekülen heraus. Diese stoßen auf weitere Biomoleküle und schädigen diese. Auch das Erbgutmolekül DNA ist davon betroffen, was im Extremfall zu Krebs führen kann.


Protokoll eines Zerfalls: Wenn ein Elektron ein Argonatom in einem zweiatomigen Molekül trifft (links), schlägt es aus diesem ein Sekundärelektron heraus und wird dabei von seiner Bahn abgelenkt. Das Argonatom nimmt dabei Energie auf und gibt diese an das andere Atom weiter (rote Zickzack-Linie). Daraufhin wird auch dieses Atom ionisiert, sodass sich die beiden Argonionen gegenseitig abstoßen. Bei dem Prozess entstehen zwei zusätzliche langsame Elektronen. Die schädliche Wirkung von Elektronenstrahlen, wie sie beim radioaktiven Beta-Zerfall entstehen, wird so vervielfacht.

© Alexander Dorn / MPI für Kernphysik

Aber auch für die gezielte Zerstörung von Krebszellen werden Strahlung und die mit ihr verbundenen Sekundärteilchen genutzt. Unter diesen Sekundärteilchen ließen Forscher langsame Elektronen lange Zeit unberücksichtigt, weil deren Energie nicht ausreicht, um ein Molekül zu ionisieren. Seit aber bekannt ist, dass die langsamen Elektronen DNA-Moleküle trotzdem effektiv schädigen können, erforschen Physiker die Entstehung solcher Sekundärelektronen intensiver.

Nun haben Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg in Zusammenarbeit mit Kollegen von der Universität Innsbruck erstmals einen Prozess untersucht, bei dem ein zunächst schnelles Elektron ein Molekül trifft und drei Sekundärelektronen auftreten. Dadurch vervielfacht sich die Menge der freien Elektronen. Weil sich viele davon langsam bewegen, könnten die nun beobachteten Teilchenreaktionen eine wichtige Rolle bei der Entstehung von Strahlenschäden spielen.

Die Heidelberger und Innsbrucker Physiker um Xueguang Ren untersuchten anhand eines einfachen Modellsystems aus zwei schwach aneinander gebundenen Argonatomen, wie Sekundärelektronen entstehen. Auf diese sogenannten Argondimere schossen sie Elektronen.

Vom Stoß mit einem Elektron wird das Argondimer regelrecht zerfetzt. Die elektrisch geladenen Bruchstücke – negative Elektronen und positive Atomrümpfe – fliegen explosionsartig auseinander. Mit einem eigens konstruierten Reaktionsmikroskop gelang es den Heidelberger Forschern nun erstmals, nicht nur die Energie von davonfliegenden Ionen zu messen, was dem bisherigen Stand der Technik entspricht, sondern auch die der Elektronen, die wegen ihrer höheren Energie wesentlich schwerer auf den Detektor zu lenken sind. Mit den gemessenen Energien aller beteiligten Teilchen waren die Physiker erstmals in der Lage, die Reaktionsmechanismen in ihrem Modellsystem zu identifizieren und Details der Reaktionsabläufe zu studieren.

Zwei Zerfallsprozesse lassen sich voneinander unterscheiden

Ähnlich einer Billardkugel gibt das Elektron einen Teil seiner Energie an seinen direkten Stoßpartner – eines der beiden Argonatome – ab und wird dabei von seiner ursprünglichen Bahn abgelenkt. Der Reaktionspartner verliert dadurch ein Elektron, er wird also ionisiert. Gleichzeitig wird er energetisch angeregt, das heißt er speichert einen Teil der Energie.

Diese überträgt er dann an das zweite Argonatom, das dadurch ebenfalls ionisiert wird. Die beiden Argonionen stoßen sich nun wegen ihrer positiven Ladung gegenseitig ab und entfernen sich voneinander. Insgesamt fliegen also fünf Teilchen wie in einer Explosion auseinander: das eingestrahlte Elektron, zwei Argonionen sowie die zwei vom Argondimer freigesetzten Elektronen. Das Ganze wird als Interatomarer Coulomb-Zerfall (engl. Interatomic Coulomb Decay, abgekürzt: ICD) bezeichnet.

Den ICD konnten das Heidelberger Team von einem zweiten Prozess, dem sogenannten Strahlenden Ladungstransfer (engl. radiative charge transfer, abgekürzt: RCT) unterscheiden. Beim RCT wird das erste Argonatom doppelt ionisiert, verliert also zwei Elektronen. Es nimmt dann ein Elektron vom zweiten Argonatom auf, das so ebenfalls ionisiert wird. Das Ergebnis ist das gleiche: die beiden Ionen und drei Elektronen streben auseinander. Allerdings wird die Energie bei den beiden Reaktionsvarianten unterschiedlich auf die fünf Teilchen verteilt.

Für den ICD machten die Heidelberger Forscher eine interessante Entdeckung: Je mehr Energie das eingestrahlte Elektron an das Argonatom abgibt, desto langsamer wird die Energie auf das Nachbaratom übertragen.

Die Anzahl schädlicher Elektronen wird vervielfacht

Dies stellten die Forscher anhand auf folgende Weise fest: Das Argondimer vibriert, sodass sich die Atome periodisch voneinander entfernen und wieder annähern. Bei langsamer Energieübertragung kann sich aufgrund der Vibration der Abstand zwischen den Atomen ändern, während die Energie fließt. Bei schnellem Transfer hingegen bleibt der Abstand während des Energietransfers gleich, weil in der kurzen Zeit keine Vibration stattfindet.

Der Abstand der beiden Argonatome zum Zeitpunkt der Reaktion lässt sich aus der Energie der davonfliegenden Argonionen rekonstruieren. Weicht dieser vom Gleichgewichtsabstand des neutralen Argondimers ab, dann hat ein langsamer ICD stattgefunden, ansonsten ein schneller.

Die Heidelberger und Innsbrucker Physiker betreiben Grundlagenforschung, bei der es um das Studium der Reaktionsmechanismen geht. Dennoch misst das Teammitglied Alexander Dorn der neuen Methodik auch eine Bedeutung für die Strahlenbiologie zu. „Solche Prozesse, wie wir sie jetzt untersucht haben, vervielfachen die Anzahl von relativ langsamen Elektronen, die biologische Schäden hervorrufen können“, erklärt der Physiker. Und mehr noch: „Bei bisherigen Untersuchungen ähnlicher Art wurde Röntgenstrahlung auf Modellsysteme gelenkt“, erklärt er. „Wir haben nun die Bestrahlung mit Elektronen untersucht.“ Dies sei nah an der Realität, da radioaktive Strahlung auf ihrem Weg durch den Körper eben solche Elektronen freisetze, die dann auf biologisch aktive Moleküle träfen.

Ansprechpartner

Dr. Alexander Dorn

Telefon:+49 6221 516-513

Originalpublikation

Xueguang Ren, Elias Jabbour Al Maalouf, Alexander Dorn und Stephan Denif
Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron-impact

Dr. Alexander Dorn | Max-Planck-Institut für Kernphysik, Heidelberg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physikerteam sagt neue Moleküle aus Licht voraus
26.02.2020 | Leibniz Universität Hannover

nachricht Wie groß das Neutron ist
26.02.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bonner Mediziner etablieren weltweit neues, leicht tragbares Ultraschallsystem aus den USA für die Lehre am Krankenbett

27.02.2020 | Medizintechnik

Gegen multiresistente Tuberkulose-Erreger: Mit künstlicher Intelligenz neuen Wirkstoffkombinationen auf der Spur

27.02.2020 | Medizin Gesundheit

Mikro-Überlebenskünstler: Archaeen bewältigen biologische Methanisierung trotz Asche und Teer

27.02.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics