Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strahlenschäden: Die gefährliche Spur langsamer Elektronen

23.03.2016

Details zum Mechanismus, mit dem Elektronenstöße Moleküle sprengen, vertiefen das Verständnis, wie Radioaktivität biologischen Zellen zusetzt

Wie Radioaktivität biologische Zellen schädigt, wissen Forscher nur zum Teil. Im Fokus aktueller Untersuchungen steht die Wirkung so genannter Sekundärteilchen. Dringt Strahlung in den Körper ein, schlägt sie Elektronen aus biologischen Molekülen heraus. Diese stoßen auf weitere Biomoleküle und schädigen diese. Auch das Erbgutmolekül DNA ist davon betroffen, was im Extremfall zu Krebs führen kann.


Protokoll eines Zerfalls: Wenn ein Elektron ein Argonatom in einem zweiatomigen Molekül trifft (links), schlägt es aus diesem ein Sekundärelektron heraus und wird dabei von seiner Bahn abgelenkt. Das Argonatom nimmt dabei Energie auf und gibt diese an das andere Atom weiter (rote Zickzack-Linie). Daraufhin wird auch dieses Atom ionisiert, sodass sich die beiden Argonionen gegenseitig abstoßen. Bei dem Prozess entstehen zwei zusätzliche langsame Elektronen. Die schädliche Wirkung von Elektronenstrahlen, wie sie beim radioaktiven Beta-Zerfall entstehen, wird so vervielfacht.

© Alexander Dorn / MPI für Kernphysik

Aber auch für die gezielte Zerstörung von Krebszellen werden Strahlung und die mit ihr verbundenen Sekundärteilchen genutzt. Unter diesen Sekundärteilchen ließen Forscher langsame Elektronen lange Zeit unberücksichtigt, weil deren Energie nicht ausreicht, um ein Molekül zu ionisieren. Seit aber bekannt ist, dass die langsamen Elektronen DNA-Moleküle trotzdem effektiv schädigen können, erforschen Physiker die Entstehung solcher Sekundärelektronen intensiver.

Nun haben Forscher des Max-Planck-Instituts für Kernphysik in Heidelberg in Zusammenarbeit mit Kollegen von der Universität Innsbruck erstmals einen Prozess untersucht, bei dem ein zunächst schnelles Elektron ein Molekül trifft und drei Sekundärelektronen auftreten. Dadurch vervielfacht sich die Menge der freien Elektronen. Weil sich viele davon langsam bewegen, könnten die nun beobachteten Teilchenreaktionen eine wichtige Rolle bei der Entstehung von Strahlenschäden spielen.

Die Heidelberger und Innsbrucker Physiker um Xueguang Ren untersuchten anhand eines einfachen Modellsystems aus zwei schwach aneinander gebundenen Argonatomen, wie Sekundärelektronen entstehen. Auf diese sogenannten Argondimere schossen sie Elektronen.

Vom Stoß mit einem Elektron wird das Argondimer regelrecht zerfetzt. Die elektrisch geladenen Bruchstücke – negative Elektronen und positive Atomrümpfe – fliegen explosionsartig auseinander. Mit einem eigens konstruierten Reaktionsmikroskop gelang es den Heidelberger Forschern nun erstmals, nicht nur die Energie von davonfliegenden Ionen zu messen, was dem bisherigen Stand der Technik entspricht, sondern auch die der Elektronen, die wegen ihrer höheren Energie wesentlich schwerer auf den Detektor zu lenken sind. Mit den gemessenen Energien aller beteiligten Teilchen waren die Physiker erstmals in der Lage, die Reaktionsmechanismen in ihrem Modellsystem zu identifizieren und Details der Reaktionsabläufe zu studieren.

Zwei Zerfallsprozesse lassen sich voneinander unterscheiden

Ähnlich einer Billardkugel gibt das Elektron einen Teil seiner Energie an seinen direkten Stoßpartner – eines der beiden Argonatome – ab und wird dabei von seiner ursprünglichen Bahn abgelenkt. Der Reaktionspartner verliert dadurch ein Elektron, er wird also ionisiert. Gleichzeitig wird er energetisch angeregt, das heißt er speichert einen Teil der Energie.

Diese überträgt er dann an das zweite Argonatom, das dadurch ebenfalls ionisiert wird. Die beiden Argonionen stoßen sich nun wegen ihrer positiven Ladung gegenseitig ab und entfernen sich voneinander. Insgesamt fliegen also fünf Teilchen wie in einer Explosion auseinander: das eingestrahlte Elektron, zwei Argonionen sowie die zwei vom Argondimer freigesetzten Elektronen. Das Ganze wird als Interatomarer Coulomb-Zerfall (engl. Interatomic Coulomb Decay, abgekürzt: ICD) bezeichnet.

Den ICD konnten das Heidelberger Team von einem zweiten Prozess, dem sogenannten Strahlenden Ladungstransfer (engl. radiative charge transfer, abgekürzt: RCT) unterscheiden. Beim RCT wird das erste Argonatom doppelt ionisiert, verliert also zwei Elektronen. Es nimmt dann ein Elektron vom zweiten Argonatom auf, das so ebenfalls ionisiert wird. Das Ergebnis ist das gleiche: die beiden Ionen und drei Elektronen streben auseinander. Allerdings wird die Energie bei den beiden Reaktionsvarianten unterschiedlich auf die fünf Teilchen verteilt.

Für den ICD machten die Heidelberger Forscher eine interessante Entdeckung: Je mehr Energie das eingestrahlte Elektron an das Argonatom abgibt, desto langsamer wird die Energie auf das Nachbaratom übertragen.

Die Anzahl schädlicher Elektronen wird vervielfacht

Dies stellten die Forscher anhand auf folgende Weise fest: Das Argondimer vibriert, sodass sich die Atome periodisch voneinander entfernen und wieder annähern. Bei langsamer Energieübertragung kann sich aufgrund der Vibration der Abstand zwischen den Atomen ändern, während die Energie fließt. Bei schnellem Transfer hingegen bleibt der Abstand während des Energietransfers gleich, weil in der kurzen Zeit keine Vibration stattfindet.

Der Abstand der beiden Argonatome zum Zeitpunkt der Reaktion lässt sich aus der Energie der davonfliegenden Argonionen rekonstruieren. Weicht dieser vom Gleichgewichtsabstand des neutralen Argondimers ab, dann hat ein langsamer ICD stattgefunden, ansonsten ein schneller.

Die Heidelberger und Innsbrucker Physiker betreiben Grundlagenforschung, bei der es um das Studium der Reaktionsmechanismen geht. Dennoch misst das Teammitglied Alexander Dorn der neuen Methodik auch eine Bedeutung für die Strahlenbiologie zu. „Solche Prozesse, wie wir sie jetzt untersucht haben, vervielfachen die Anzahl von relativ langsamen Elektronen, die biologische Schäden hervorrufen können“, erklärt der Physiker. Und mehr noch: „Bei bisherigen Untersuchungen ähnlicher Art wurde Röntgenstrahlung auf Modellsysteme gelenkt“, erklärt er. „Wir haben nun die Bestrahlung mit Elektronen untersucht.“ Dies sei nah an der Realität, da radioaktive Strahlung auf ihrem Weg durch den Körper eben solche Elektronen freisetze, die dann auf biologisch aktive Moleküle träfen.

Ansprechpartner

Dr. Alexander Dorn

Telefon:+49 6221 516-513

Originalpublikation

Xueguang Ren, Elias Jabbour Al Maalouf, Alexander Dorn und Stephan Denif
Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron-impact

Dr. Alexander Dorn | Max-Planck-Institut für Kernphysik, Heidelberg

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einzelne Atome im Visier
25.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns
24.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einzelne Atome im Visier

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forschende haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich...

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

17. Internationale Conference on Carbon Dioxide Utilization in Aachen

25.06.2019 | Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Einzelne Atome im Visier

25.06.2019 | Physik Astronomie

Clever Chillen mit weniger Kältemittel: Neue Blue e Chiller von 11 bis 25 kW

25.06.2019 | Energie und Elektrotechnik

Neuer Therapieansatz fördert die Reparatur von Blutgefässen nach einem Hirnschlag

25.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics