Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sternenstaub reist häufiger in Meteoriten mit als gedacht

15.08.2017

Mainzer Max-Planck-Forscher entwickeln verbessertes Verfahren für die Sternenstaubanalyse: Viele Sternenstaubkörner in Meteoriten sind bisher vermutlich unentdeckt geblieben.

Auch kleinste Staubkörner können Geschichten erzählen. Vor allem, wenn sie aus dem Weltall stammen. Meteorite enthalten kleinste Mengen sogenannten Sternenstaubs, der seinen Ursprung in alternden, sich auflösenden Sternen hat und älter als unser Sonnensystem ist.


Im Bild (b) erkennt man als Hotspot ein etwa 130 Nanometer großes Silikat-Sternenstaubkorn. Viele Sternenstaubkörner dieser Größe werden erst dank des verkleinerten Ionenstrahls sichtbar.

Peter Hoppe, MPIC + Nature Astronomy

Dieser Sternenstaub ist Teil des Rohstoffs, aus dem vor etwa 4,6 Milliarden Jahren unsere Planeten und die Meteoriten-Mutterkörper, die Asteroiden, entstanden sind. Peter Hoppe und sein Team am Max-Planck-Institut für Chemie in Mainz konnten nun herausfinden, dass eine Vielzahl der Silikat-Sternenstaubkörner in den Meteoriten viel kleiner ist, als bisher angenommen.

Viele von ihnen sind deshalb bei bisherigen Untersuchungen vermutlich übersehen worden, sodass die Wissenschaftler davon ausgehen, dass die Masse der Silikat-Sternenstaubkörner in den Meteoriten mindestens doppelt so groß ist als bisher gedacht.

Die Max-Planck-Wissenschaftler gelangten zu den neuen Erkenntnissen, indem sie ihre Untersuchungsmethode veränderten. Mithilfe der NanoSIMS-Ionensonde fertigten die Mainzer wie gewohnt „Landkarten“ von dünngeschliffenen Meteoritenproben an. Im Submikrometerbereich wird dabei die Verteilung der Häufigkeit bestimmter Isotope gemessen.

Dazu wird die Probe mit einem fokussierten Ionenstrahl abgerastert und die dabei aus der Probe herausgeschlagenen Teilchen massenspektrometrisch analysiert. Doch für die neue Entdeckung war der übliche Ionenstrahl mit seinen 100 Nanometern noch zu breit.

„Bisher konnten nur Sternenstaubkörner mit einer Größe von mindestens etwa 200 Nanometern zuverlässig gefunden werden. Wir haben den Ionenstrahl für unsere Untersuchungen verkleinert und konnten so noch viele kleinere Sternenstaubkörner sichtbar machen“, erläutert Peter Hoppe, Gruppenleiter am MPI für Chemie. Diese Methode sei bisher immer als zu ineffizient zur Probenvermessung angesehen worden, erklärt er weiter.

„Mit der herkömmlichen, gröberen Methode kann man 10-mal mehr Fläche in der gleichen Zeit abscannen.“ Die Forscher wurden für ihre Geduld belohnt und fanden in den Isotopenbildern der Meteoritendünnschliffe ungeahnt viele „Hotspots“ mit anomalen Isotopenhäufigkeiten, über die sich der Silikat-Sternenstaub bemerkbar macht. „Offensichtlich sind viele der Silikat-Sternenstaubkörner kleiner als bisher gedacht. Mit der bisherigen Methode sind meteoritische Sternenstaubkörner mit einer Größe von weniger als etwa 200 Nanometer größtenteils nicht entdeckt worden“, schlussfolgert Peter Hoppe.

Aufbauend auf den neuen Ergebnissen lässt sich vermuten, dass der Silikat-Sternenstaub einige Prozent des Staubs in der interstellaren Urmasse unseres Sonnensystems ausmachte. Damit legt die Entdeckung der MPI für Chemie Forscher den Schluss nahe, dass Silikat-Sternenstaub ein noch wichtigerer Baustein für die Entstehung unseres Sonnensystems war, als bislang gedacht.

Hintergrundinfos:
Ein wichtiger Bestandteil der Silikate ist Sauerstoff. Anders als beispielsweise Siliziumkarbid-Sternenstaub können Silikat-Sternenstaubkörner nicht durch chemische Methoden aus den Meteoriten separiert werden. Sie blieben deshalb lange unentdeckt. Erst mithilfe der NanoSIMS-Ionensonde konnte 2002 das erste Silikat-Sternenstaubkörnchen als sogenannter Hotspot in Isotopenhäufigkeitsbildern des Sauerstoffs identifiziert werden. Bei der NanoSIMS-Ionensonde handelt es sich um ein sogenanntes Sekundärionen-Massenspektrometer, mit dem Isotopenmessungen im nanoskaligen Bereich gemacht werden können.
Hotspots sind Bereiche mit ungewöhnlichen Isotopenhäufigkeiten, den Fingerabdrücken der Muttersterne, die sich bei der Vermessung von Proben eindeutig in den Isotopenhäufigkeitsbildern identifizieren lassen. Bei den Isotopen eines chemischen Elements ist die Anzahl der Protonen im Atomkern gleich, die Zahl der Neutronen aber unterschiedlich.
Allgemein: Meteoroide sind Bruchstücke von Asteroiden (felsige und metallhaltige Kleinplaneten), die als Himmelskörper um die Sonne kreisen. Gelangen Meteoroide auf die Erde, ohne in der Erdatmosphäre zu verglühen, werden sie als Meteorite bezeichnet. Es wird unterschieden zwischen Stein-, Stein-Eisen- und Eisen-Meteoriten. Die von den Forschern untersuchten Meteorite Queen Alexandra Range (QUE) 99177, Meteorite Hills (MET) 00426 und Acfer 094 sind sogenannte kohlige Chondrite, welche zur Gruppe der Steinmeteorite gehören.

Originalpublikation:
“The Stardust Abundance in the Local Interstellar Cloud at the Birth of the Solar System”: Peter Hoppe, Jan Leitner, János Kodolányi, Nature Astronomy, 14. August 2017, DOI: 10.1038/s41550-017-0215

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Weitere Informationen:
http://www.mpic.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Übergangsmetallkomplexe: Gemischt geht's besser

16.11.2018 | Biowissenschaften Chemie

Gut vorbereitet ist halb verdaut

16.11.2018 | Biowissenschaften Chemie

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics