Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Staubige Galaxien, überall

16.12.2009
Weltraumteleskop Herschel löst einen Teil des kosmischen Infrarot-Hintergrunds in einzelne Quellen auf

Der gesamte Himmel schimmert im Infrarotlicht. Wissenschaftler aus dem Max-Planck-Institut für extraterrestrische Physik haben nun mit ihren Kollegen aus anderen Institutionen diese schwache kosmische Strahlung in einzelne Quellen aufgelöst - offenbar ferne Galaxien.

Dabei werteten die Forscher erste Beobachtungen mit dem PACS-Instrument an Bord des europäischen Weltraumteleskops Herschel aus. Diese Ergebnisse versprechen ein besseres Verständnis von der Entwicklung der Milchstraßensysteme.

Mitte der 1990er-Jahre entdeckten Wissenschaftler mit dem amerikanischen COBE-Satelliten ein schwaches Glimmen im fernen Infrarotbereich des elektromagnetischen Spektrums. Sie erreicht die Erde aus allen Himmelsrichtungen mit derselben Intensität. Die Forscher vermuteten, dass es sich um die Strahlung vieler Galaxien des frühen Universums handelt, die etwa die gleiche Energiemenge im fernen Infrarot abgeben, wie wir sie auch im sichtbaren Licht von ähnlich weit entfernten Sternsystemen empfangen.

Die mit unseren Augen wahrnehmbare Strahlung liefert Informationen über Sterne in Galaxien, fernes Infrarotlicht dagegen wird von kaltem Staub abgestrahlt, der neu entstandene Sterne verdeckt. Offenbar gibt es eine erstaunlich große Zahl staubiger Galaxien. Sie zu identifizieren war jedoch schwieriger als erwartet: Deren Strahlung wird von der Erdatmosphäre verschluckt und lässt sich nur mit Teleskopen im Weltraum auffangen.

Bisher konnten die Satelliten-Observatorien im kosmischen Hintergrund lediglich das ferne Infrarotlicht der hellsten Galaxien registrieren. Um Informationen über die schwächeren Objekte zu erhalten, mussten sich die Astronomen auf indirekte Nachweise durch Beobachtungen bei kürzeren Wellenlängen verlassen.

Der im Mai 2009 gestartet Satellit Herschel der europäischen Raumfahrtbehörde ESA beherbergt das größte jemals gebaute Weltraumteleskop mit einem Spiegeldurchmesser von 3,5 Metern. Das Bordinstrument PACS macht detailreiche Bilder des Himmels bei Wellenlängen von 70 bis 160 Mikrometer (tausendstel Millimeter) - genau in jenem Bereich, in dem der kosmische Infrarothintergrund am hellsten strahlt.

"Nach der Testphase unseres Instruments konnten wir es kaum noch erwarten, die ersten tiefen Beobachtungen im fernen Infrarot zu machen", sagt Albrecht Poglitsch vom Max-Planck-Institut für extraterrestrische Physik in Garching bei München und leitender PACS-Wissenschaftler.

Während insgesamt 30 Stunden im Oktober beobachtete PACS einen kleinen Himmelsausschnitt im Großen Wagen, etwa ein Viertel so groß wie die Fläche des Vollmonds. "Schon mit diesen ersten Beobachtungen gelang es uns, etwa 60 Prozent des kosmischen Infrarothintergrunds in einzelne, gut nachgewiesene Quellen aufzulösen", sagt Dieter Lutz vom wissenschaftlichen Konsortium aus fünf europäischen Instituten, die diese Daten gesammelt haben.

Die Messungen seien indes nur der Anfang. "Wir werden bald noch empfindlichere Beobachtungen haben. Damit können wir im Detail verstehen, in welcher Phase der Entwicklung des Alls wir diese Galaxien finden und was ihre Eigenschaften sind", sagt Lutz.

Die PACS-Bilder des GOODS-N-Feldes wurden als Teil des Beobachtungsprogramms "PACS Evolutionary Probe" (PEP) in garantierter Beobachtungszeit mit dem Satelliten Herschel aufgenommen. Die Wissenschaftler des PEP-Konsortiums arbeiten an folgenden Institutionen: Max-Planck-Institut für extraterrestrische Physik (Deutschland), CEA Saclay (Frankreich), Instituto de Astrofísica de Canarias (Spanien), Istituto Nazionale di Astrofisica (Italien), und dem Herschel Science Centre unter der Leitung von Dieter Lutz (Max-Planck-Institut für extraterrestrische Physik).

Das PACS-Instrument wurde von einem Konsortium aus Instituten und Universitätsabteilungen aus ganz Europa unter der Führung des leitenden Wissenschaftlers Albrecht Poglitsch am Max-Planck-Institut für extraterrestrische Physik in Garching entwickelt und gebaut. Die Mitglieder des Konsortiums sind Belgien: IMEC, KUL, CSL; Deutschland: MPE, MPIA; Frankreich: CEA, OAMP; Italien: IFSI, OAP/AOT, OAA/CAISMI, LENS, SISSA; Österreich: UVIE; Spanien: IAC; Ungarn: Konkoly; USA: NHSC.

Weitere Informationen erhalten Sie von:

Dr. Hannelore Hämmerle, Pressesprecherin MPI für Astrophysik und
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3980
E-Mail: hannelore.haemmerle@mpe.mpg.de
Dr. Dieter Lutz
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3614
E-Mail: lutz@mpe.mpg.de
Dr. Albrecht Poglitsch
Max-Planck-Institut für extraterrestrische Physik, Garching
Tel.: +49 89 30000-3293
E-Mail: alpog@mpe.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://pacs.mpe.mpg.de/
http://www.esa.int/SPECIALS/Herschel/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics