Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starke Kopplung durch Spin-Trio

26.07.2018

Um Qubits für Quantencomputer weniger störanfällig zu machen, benutzt man vorzugsweise den Spin zum Beispiel eines Elektrons. ETH-Forscher haben nun eine Methode entwickelt, mit der ein solches Spin-Qubit stark an Mikrowellen-Photonen gekoppelt werden kann.

Quantencomputer rechnen mit Quanten-Bits oder «Qubits», also Quantenzuständen beispielsweise von Atomen oder Elektronen, die gleichzeitig die logischen Werte «0» und «1» annehmen können. Um viele solcher Qubits zu einem leistungsstarken Quantenrechner zusammenzuschliessen, muss man sie über Entfernungen von Millimetern oder gar mehreren Metern miteinander koppeln.


Ein Spin-Trio aus in Quantenpunkten gefangenen Elektronen (rot). Durch quantenmechanisches Tunneln entsteht ein Dipolmoment, das an die elektromagnetische Welle eines Resonators (gelb) koppelt.

ETH Zürich / Andreas Landig

Dies kann zum Beispiel, ganz ähnlich wie bei einer Radioantenne, über die Ladungsverschiebung durch eine elektromagnetische Welle erreicht werden. Allerdings setzt eine solche Kopplung das Qubit auch störenden Einflüssen von unerwünschten elektrischen Feldern aus, worunter die Qualität der logischen Qubit-Operationen stark leidet.

Forschende mehrerer Professuren der ETH Zürich haben nun mit Unterstützung durch theoretische Physiker der Universität von Sherbrooke in Kanada gezeigt, wie man dieses Problem umgehen kann. Dazu fanden sie einen Weg, um ein Mikrowellen-Photon an ein Spin-Qubit in einem Quantenpunkt zu koppeln.

Qubits mit Ladung oder Spin

In Quantenpunkten fängt man zunächst Elektronen in nur wenige Nanometer grossen Halbleiterstrukturen ein, die auf weniger als ein Grad über dem absoluten Nullpunkt abgekühlt werden. Die logischen Werte 0 und 1 können nun auf zweierlei Weise realisiert werden. Entweder man definiert ein Qubit dadurch, dass sich das Elektron auf der linken oder rechten Seite eines doppelten Quantenpunktes befindet, oder über den Spin des Elektrons, der nach oben oder unten zeigen kann.

Im ersten Fall spricht man von einem Ladungs-Qubit, das durch die elektrische Ladungsverschiebung stark an elektromagnetische Wellen koppelt. Ein Spin-Qubit dagegen kann man sich als winzige Kompassnadel vorstellen, die nach oben oder unten zeigt. Wie eine Kompassnadel ist der Spin magnetisch und koppelt daher nicht an elektrische, sondern an magnetische Felder. Die Kopplung des Spin-Qubits an den magnetischen Anteil von elektromagnetischen Wellen ist dabei viel schwächer als diejenige eines Ladungs-Qubits an den elektrischen Anteil.

Drei Spins für stärkere Kopplung

Dadurch ist ein Spin-Qubit zwar einerseits weniger störanfällig und behält seine Kohärenz (auf der die Funktionsweise des Quantencomputers basiert) über einen längeren Zeitraum. Andererseits ist es aber auch deutlich schwieriger, Spin-Qubits mittels Photonen über lange Distanzen aneinander zu koppeln.

Um dies trotzdem möglich zu machen, benutzt die Arbeitsgruppe einen Trick, wie Jonne Koski, Postdoktorand in der Gruppe von ETH-Professor Klaus Ensslin, erklärt: «Indem wir für die Realisierung des Qubits nicht einen, sondern gleich drei Spins verwenden, können wir die Vorteile eines Spin-Qubits mit denen eines Ladungs-Qubits verbinden.»

In der Praxis werden dafür auf einem Halbleiterchip drei Quantenpunkte hergestellt, die nahe beieinander liegen und mittels winziger Drähte durch angelegte Spannungen kontrolliert werden können. In jedem der Quantenpunkte können Elektronen mit nach oben oder unten ausgerichtetem Spin gefangen werden.

Durch einen der Drähte ist das Spin-Trio zudem mit einem Mikrowellenresonator verbunden. Die Spannungen an den Quantenpunkten stellt man nun so ein, dass sich auf jedem der Quantenpunkte jeweils ein Elektron befindet und die Spins von zwei der Elektronen in die gleiche, der dritte dagegen in die entgegengesetzte Richtung zeigt.

Ladungsverschiebung durch Tunneln

Nach den Regeln der Quantenmechanik können die Elektronen zudem mit einer gewissen Wahrscheinlichkeit zwischen den Quantenpunkten hin und her tunneln. Dadurch kann es vorkommen, dass sich von den drei Elektronen zeitweise zwei in demselben Quantenpunkt befinden, wogegen einer leer bleibt. In dieser Konstellation ist die elektrische Ladung nun ungleich verteilt. Durch diese Ladungsverschiebung wiederum entsteht ein elektrischer Dipol, der stark an das elektrische Feld eines Mikrowellenphotons koppeln kann.

Diese starke Kopplung konnten die ETH-Wissenschaftler durch eine Messung der Resonanzfrequenz des Mikrowellenresonators eindeutig nachweisen. Dabei beobachteten sie, wie sich die Resonanz des Resonators durch die Kopplung an das Spin-Trio aufspaltete. Aus den Daten konnten sie herleiten, dass die Kohärenz des Spin-Qubits über mehr als 10 Nanosekunden erhalten blieb.

Spin-Trios für Quanten-Bus

Die Forscher sind zuversichtlich, dass mit dieser Technik schon bald ein Übertragungsweg für Quanteninformation zwischen zwei Spin-Qubits (ein sogenannter Quanten-Bus) realisiert werden kann. «Dafür müssen wir zwei Spin-Trios an beiden Enden des Mikrowellenresonators platzieren und zeigen, dass die Qubits dann über ein Mikrowellenphoton miteinander gekoppelt sind», sagt der Erstautor der Studie Andreas Landig, Doktorand in Ensslins Gruppe. Damit wäre ein wichtiger Schritt in Richtung eines Netzwerks von räumlich verteilten Spin-Qubits getan. Zudem betonen die Forscher, dass sich ihre Methode problemlos auf andere Materialien wie zum Beispiel Graphen übertragen lässt und damit sehr vielseitig ist.

Diese Arbeit wurde im Rahmen des Nationalen Forschungsschwerpunkts Quantum Science and Technology (NCCR QSIT [http://www.nccr-qsit.ethz.ch]) durchgeführt. Von der ETH Zürich waren daran Wissenschaftler der Professuren von Klaus Ensslin, Thomas Ihn, Werner Wegscheider und Andreas Wallraff beteiligt.

Wissenschaftliche Ansprechpartner:

ETH Zürich
Prof. Klaus Ensslin
Laboratorium für Festkörperphysik
Tel. +41 44 633 22 09
ensslin@phys.ethz.ch

Originalpublikation:

Landig AJ, Koski JV, Scarlino P, Mendes UC, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K, Ihn T: Coherent spin–photon coupling using a resonant exchange qubit. Nature 2018, doi: 10.1038/s41586-018-0365-y [http://dx.doi.org/10.1038/s41586-018-0365-y]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/07/starke-kop...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics