Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starke Kopplung durch Spin-Trio

26.07.2018

Um Qubits für Quantencomputer weniger störanfällig zu machen, benutzt man vorzugsweise den Spin zum Beispiel eines Elektrons. ETH-Forscher haben nun eine Methode entwickelt, mit der ein solches Spin-Qubit stark an Mikrowellen-Photonen gekoppelt werden kann.

Quantencomputer rechnen mit Quanten-Bits oder «Qubits», also Quantenzuständen beispielsweise von Atomen oder Elektronen, die gleichzeitig die logischen Werte «0» und «1» annehmen können. Um viele solcher Qubits zu einem leistungsstarken Quantenrechner zusammenzuschliessen, muss man sie über Entfernungen von Millimetern oder gar mehreren Metern miteinander koppeln.


Ein Spin-Trio aus in Quantenpunkten gefangenen Elektronen (rot). Durch quantenmechanisches Tunneln entsteht ein Dipolmoment, das an die elektromagnetische Welle eines Resonators (gelb) koppelt.

ETH Zürich / Andreas Landig

Dies kann zum Beispiel, ganz ähnlich wie bei einer Radioantenne, über die Ladungsverschiebung durch eine elektromagnetische Welle erreicht werden. Allerdings setzt eine solche Kopplung das Qubit auch störenden Einflüssen von unerwünschten elektrischen Feldern aus, worunter die Qualität der logischen Qubit-Operationen stark leidet.

Forschende mehrerer Professuren der ETH Zürich haben nun mit Unterstützung durch theoretische Physiker der Universität von Sherbrooke in Kanada gezeigt, wie man dieses Problem umgehen kann. Dazu fanden sie einen Weg, um ein Mikrowellen-Photon an ein Spin-Qubit in einem Quantenpunkt zu koppeln.

Qubits mit Ladung oder Spin

In Quantenpunkten fängt man zunächst Elektronen in nur wenige Nanometer grossen Halbleiterstrukturen ein, die auf weniger als ein Grad über dem absoluten Nullpunkt abgekühlt werden. Die logischen Werte 0 und 1 können nun auf zweierlei Weise realisiert werden. Entweder man definiert ein Qubit dadurch, dass sich das Elektron auf der linken oder rechten Seite eines doppelten Quantenpunktes befindet, oder über den Spin des Elektrons, der nach oben oder unten zeigen kann.

Im ersten Fall spricht man von einem Ladungs-Qubit, das durch die elektrische Ladungsverschiebung stark an elektromagnetische Wellen koppelt. Ein Spin-Qubit dagegen kann man sich als winzige Kompassnadel vorstellen, die nach oben oder unten zeigt. Wie eine Kompassnadel ist der Spin magnetisch und koppelt daher nicht an elektrische, sondern an magnetische Felder. Die Kopplung des Spin-Qubits an den magnetischen Anteil von elektromagnetischen Wellen ist dabei viel schwächer als diejenige eines Ladungs-Qubits an den elektrischen Anteil.

Drei Spins für stärkere Kopplung

Dadurch ist ein Spin-Qubit zwar einerseits weniger störanfällig und behält seine Kohärenz (auf der die Funktionsweise des Quantencomputers basiert) über einen längeren Zeitraum. Andererseits ist es aber auch deutlich schwieriger, Spin-Qubits mittels Photonen über lange Distanzen aneinander zu koppeln.

Um dies trotzdem möglich zu machen, benutzt die Arbeitsgruppe einen Trick, wie Jonne Koski, Postdoktorand in der Gruppe von ETH-Professor Klaus Ensslin, erklärt: «Indem wir für die Realisierung des Qubits nicht einen, sondern gleich drei Spins verwenden, können wir die Vorteile eines Spin-Qubits mit denen eines Ladungs-Qubits verbinden.»

In der Praxis werden dafür auf einem Halbleiterchip drei Quantenpunkte hergestellt, die nahe beieinander liegen und mittels winziger Drähte durch angelegte Spannungen kontrolliert werden können. In jedem der Quantenpunkte können Elektronen mit nach oben oder unten ausgerichtetem Spin gefangen werden.

Durch einen der Drähte ist das Spin-Trio zudem mit einem Mikrowellenresonator verbunden. Die Spannungen an den Quantenpunkten stellt man nun so ein, dass sich auf jedem der Quantenpunkte jeweils ein Elektron befindet und die Spins von zwei der Elektronen in die gleiche, der dritte dagegen in die entgegengesetzte Richtung zeigt.

Ladungsverschiebung durch Tunneln

Nach den Regeln der Quantenmechanik können die Elektronen zudem mit einer gewissen Wahrscheinlichkeit zwischen den Quantenpunkten hin und her tunneln. Dadurch kann es vorkommen, dass sich von den drei Elektronen zeitweise zwei in demselben Quantenpunkt befinden, wogegen einer leer bleibt. In dieser Konstellation ist die elektrische Ladung nun ungleich verteilt. Durch diese Ladungsverschiebung wiederum entsteht ein elektrischer Dipol, der stark an das elektrische Feld eines Mikrowellenphotons koppeln kann.

Diese starke Kopplung konnten die ETH-Wissenschaftler durch eine Messung der Resonanzfrequenz des Mikrowellenresonators eindeutig nachweisen. Dabei beobachteten sie, wie sich die Resonanz des Resonators durch die Kopplung an das Spin-Trio aufspaltete. Aus den Daten konnten sie herleiten, dass die Kohärenz des Spin-Qubits über mehr als 10 Nanosekunden erhalten blieb.

Spin-Trios für Quanten-Bus

Die Forscher sind zuversichtlich, dass mit dieser Technik schon bald ein Übertragungsweg für Quanteninformation zwischen zwei Spin-Qubits (ein sogenannter Quanten-Bus) realisiert werden kann. «Dafür müssen wir zwei Spin-Trios an beiden Enden des Mikrowellenresonators platzieren und zeigen, dass die Qubits dann über ein Mikrowellenphoton miteinander gekoppelt sind», sagt der Erstautor der Studie Andreas Landig, Doktorand in Ensslins Gruppe. Damit wäre ein wichtiger Schritt in Richtung eines Netzwerks von räumlich verteilten Spin-Qubits getan. Zudem betonen die Forscher, dass sich ihre Methode problemlos auf andere Materialien wie zum Beispiel Graphen übertragen lässt und damit sehr vielseitig ist.

Diese Arbeit wurde im Rahmen des Nationalen Forschungsschwerpunkts Quantum Science and Technology (NCCR QSIT [http://www.nccr-qsit.ethz.ch]) durchgeführt. Von der ETH Zürich waren daran Wissenschaftler der Professuren von Klaus Ensslin, Thomas Ihn, Werner Wegscheider und Andreas Wallraff beteiligt.

Wissenschaftliche Ansprechpartner:

ETH Zürich
Prof. Klaus Ensslin
Laboratorium für Festkörperphysik
Tel. +41 44 633 22 09
ensslin@phys.ethz.ch

Originalpublikation:

Landig AJ, Koski JV, Scarlino P, Mendes UC, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K, Ihn T: Coherent spin–photon coupling using a resonant exchange qubit. Nature 2018, doi: 10.1038/s41586-018-0365-y [http://dx.doi.org/10.1038/s41586-018-0365-y]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2018/07/starke-kop...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weltweit erste Herstellung des Materials Aluminiumscandiumnitrid per MOCVD
22.10.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie
22.10.2019 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungen

Serienfertigung von XXL-Produkten: Expertentreffen in Hannover

22.10.2019 | Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

13. Aachener Technologie- und Innovationsmanagement-Tagung – »Collaborate to Innovate: Making the Net Work«

22.10.2019 | Veranstaltungsnachrichten

Studenten entwickeln einen Koffer, der automatisch auf Schritt und Tritt folgt

22.10.2019 | Innovative Produkte

Chemikern der Universität Münster gelingt Herstellung neuartiger Lewis-Supersäuren auf Phosphor-Basis

22.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics