Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der stabilste Laser der Welt

12.09.2012
Neuer Silizium-Resonator hält die Frequenz eines Lasers so stabil wie nie zuvor – wichtig für noch bessere optische Atomuhren

Ein Laser mit einer bisher unerreichten Frequenzstabilität – das ist das Ergebnis einer Forschungskooperation der Physikalisch-Technischen Bundesanstalt (PTB) innerhalb des Exzellenzclusters QUEST (Centre for Quantum Engineering and Space-Time Research) mit Kollegen aus dem amerikanischen NIST (National Institute of Standards and Technology)/JILA.


Foto: Der neue Silizium-Resonator im Größenvergleich mit einer Münze
(Abb.: PTB)

Ihre Entwicklung, über die sie in der Fachzeitschrift Nature Photonics berichten, ist wichtig für die höchstauflösende optische Spektroskopie z. B. von ultrakalten Atomen. Doch vor allem steht jetzt ein noch stabilerer Abfragelaser für den Einsatz in optischen Atomuhren zur Verfügung.

Für den Betrieb optischer Atomuhren werden Laserquellen benötigt, die Licht mit möglichst gleichbleibender Frequenz ausstrahlen. Kommerzielle Lasersysteme sind ohne weitere Maßnahmen hierfür ungeeignet. Damit die Laser aber eine möglichst konstante Frequenz abgeben, stabilisiert man sie beispielsweise mithilfe optischer Resonatoren.
Diese setzen sich aus zwei hochreflektierenden Spiegeln zusammen, die durch einen Abstandshalter in fester Entfernung gehalten werden. Das Entscheidende: In Analogie zu einer Orgelpfeife bestimmt die Resonatorlänge, mit welcher Frequenz Licht im Resonator anschwingen kann. Für einen stabilen Laser wird folglich ein Resonator mit hoher Längenstabilität benötigt, d. h. der Abstand zwischen den Spiegeln muss so gut wie möglich konstant gehalten werden.

Moderne resonatorstabilisierte Lasersysteme sind mittlerweile technisch so ausgereift, dass ihre Stabilität nur noch durch das thermische Rauschen der Resonatoren begrenzt ist. Ähnlich zur Brown´schen Molekularbewegung sind die Atome in dem Resonator ständig in Bewegung und schränken damit seine Längenstabilität ein. Bisherige Resonatoren bestanden aus Glas, dessen ungeordnete und „weiche“ Materialstruktur besonders starke Bewegungen zeigt. Für den neuen Resonator hat die Forschergruppe einkristallines Silizium verwendet, ein besonders „steifes“ und deshalb rauscharmes Material.

Abgekühlt auf eine Temperatur von 124 K (-149 Grad Celsius) zeichnet sich Silizium durch eine verschwindend kleine Wärmeausdehnung aus und noch vorhandenes thermisches Rauschen wird zusätzlich reduziert. Um den Resonator bei dieser Temperatur betreiben zu können, mussten die Forscher zunächst einen geeigneten schwingungsarmen Kryostaten entwerfen. Das Resultat kann sich sehen lassen: Durch Vergleichsmessungen mit zwei Glasresonatoren konnten die Wissenschaftler eine bisher unerreichte Frequenzstabilität von 1 • 10-16 für den auf den Silizium-Resonator stabilisierten Laser nachweisen.

Damit können sie ein wichtiges Hindernis bei der Entwicklung noch besserer optischer Atomuhren aus dem Weg räumen. Denn die Stabilität der dabei verwendeten Laser ist ein kritischer Punkt. Das „Pendel“, also das schwingende System einer solchen Uhr, ist eine schmale optische Absorptionslinie in einem Atom oder Ion, deren Übergangsfrequenz von einem Laser ausgelesen wird. Die Linienbreite dieser Übergänge beträgt typischerweise wenige Millihertz, ein Wert, der durch die begrenzte Längenstabilität von Glasresonatoren nicht erreicht werden konnte.

Aber jetzt ist es möglich. Der Laser, der auf den Silizium-Resonator stabilisiert ist, erreicht eine Linienbreite von weniger als 40 mHz und kann daher dazu beitragen, bei der Entwicklung von optischen Atomuhren in eine neue Dimension vorzustoßen. Und auch die optische Präzisionsspektroskopie, ein weiterer Forschungsschwerpunkt des Exzellenzclusters QUEST, kann entscheidende Impulse bekommen.

„Für die Zukunft sehen wir noch Spielräume bei den optischen Spiegeln, deren thermisches Rauschen die erreichbare Stabilität begrenzt“, erklärt PTB-Physiker Christian Hagemann. Daher wollen die Forscher zukünftig zu noch tieferen Temperaturen gehen und neuartige hochreflektierende Strukturen verwenden, um die Frequenzstabilität noch einmal um eine Größenordnung verbessern zu können. es/ptb

Wissenschaftliche Veröffentlichung:
Kessler, T.; Hagemann, C.; Grebing, C.; Legero, T.; Sterr, U.; Riehle, F.; Martin, M.J.; Chen, L.; Ye, J.:
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nature Photonics, DOI: 10.1038/nphoton.2012.217,
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Ansprechpartner:
Christian Hagemann, PTB-Arbeitsgruppe 4.32 Quantenoptik mit kalten Atomen,
Tel. (0531) 592-4357, E-Mail: christian.hagemann@ptb.de

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de
http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2012.217.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

nachricht Von 0 auf 1 in einer billionstel Sekunde
16.05.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Studentische Modelle: 5G-Sendemasten aus Holz für ein ästhetisches und nachhaltiges Stadtbild

20.05.2019 | Architektur Bauwesen

Klimakiller Zement: Wie sich mit Industrieabfällen CO2-neutrale Alternativen herstellen lassen

20.05.2019 | Materialwissenschaften

Wasserstoff – Energieträger der Zukunft?

20.05.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics