Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Quantenbits

08.12.2017

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein stabiles Quantengatter für Zwei-Quantenbit-Systeme aus Silicium.


Quantengatter aus zwei Silicium-Elektronen. Die Drehimpulse der beiden Elektronen werden durch zwei Nano-Elektroden (VL und VR) kontrolliert. Eine dritte Nano-Elektrode (VM) koordiniert die Interaktion beider Elektronen.

Quelle: Uni Konstanz

Das Quantengatter ist in der Lage, alle notwendigen Grundoperationen des Quantenrechners auszuführen. Als grundlegende Speichereinheit („Quantenbit“) dient der sogenannte Elektronenspin von einzelnen Elektronen in Silicium. Die Forschungsergebnisse sind im Wissenschaftsjournal Science in der Online-Ausgabe First Release vom 7. Dezember 2017 veröffentlicht und erscheinen später in der Druckausgabe.

Bis der erste Quantencomputer in den Kaufhäusern stehen wird, werden noch einige Jahre ins Land gehen. Schon heute zeichnet sich aber ab, dass mit dem Quantencomputer ein großer Entwicklungssprung der Computertechnologie ansteht. Der Quantenrechner wird leistungsfähiger sein und Probleme lösen können, an denen klassische Computer scheitern.

Allerdings reagiert der Quantencomputer weitaus empfindlicher auf Störungen von außen als ein klassischer Rechner. Ein vorrangiges Ziel der Forschung ist also, stabile „Quantengatter“ – so heißt das grundlegende „Schaltsystem“ des Quantencomputers – zu schaffen. Wissenschaftlern der Universität Konstanz, der Princeton University und der University of Maryland ist es nun gelungen, stabile Quantengatter für Zwei-Quantenbit-Systeme zu erstellen.

Ihr Quantengatter nutzt einzelne Silicium-Elektronen als Informationsspeicher („Quantenbit“) und kann die Interaktion von zwei Quantenbits präzise steuern und auslesen. Damit ist das Quantengatter in der Lage, alle notwendigen Grundoperationen des Quantenrechners zu vollziehen.

Vom Elektron zum Quantenbit

So wie ein klassischer Digitalrechner mit dem „Bit“ die Zustände Null und Eins als Grundeinheit aller Rechenprozesse verwendet, so braucht auch ein Quantencomputer eine grundlegende Speichereinheit, das Quantenbit. Dieses verfügt aber neben der Null und der Eins über weitere Zustände und ist daher sehr viel komplexer in seiner Umsetzung als ein einfaches Digitalsystem.

In der Forschung gibt es mehrere Ideen, wie ein Quantenbit technisch realisiert werden könnte, beispielsweise über Ionen oder supraleitende Systeme. Die Forscher aus Konstanz, Princeton und Maryland nutzen hingegen den Elektronenspin im Halbleitermaterial Silicium als Grundlage des Quantenbits, also den Eigendrehimpuls eines einzelnen Elektrons. Die Drehrichtung des Elektrons entspricht der Null und Eins des digitalen Bit, wobei der genaue Quantenzustand des Elektrons weitere Information verkörpern kann, die über die bloße Null und Eins hinausgeht.

Eine erste Leistung der Forscher war daher, aus den Milliarden von Atomen eines Silicium-Stücks ein einzelnes Elektron herauszulösen. „Das ist eine extreme Leistung, die da von unseren Kollegen aus Princeton vollbracht wurde“, schildert der Konstanzer Physiker Prof. Dr. Guido Burkard, der die theoretische Forschung in Konstanz koordinierte. Die Forscher nutzen eine Kombination aus elektromagnetischer Anziehung und Abstoßung, um ein einzelnes Elektron aus dem Elektronenverbund zu separieren. Die herausgelösten Elektronen werden anschließend punktgenau aufgereiht und jeweils in eine Art „Mulde“ eingebettet, wo sie in einem Schwebezustand gehalten werden.

Die nächste Herausforderung war, ein System zu entwickeln, mit dem der Drehimpuls der einzelnen Elektronen kontrolliert werden kann. Die Konstanzer Physiker um Guido Burkard und Maximilian Russ haben hierfür ein Verfahren entwickelt: An jedes Elektron wird jeweils eine Nano-Elektrode angelegt. Mittels eines sogenannten Magnetfeldgradienten können die Physiker ein ortsabhängiges Magnetfeld schaffen, mit dem sich die Elektronen einzeln ansteuern lassen. Die Forscher können dadurch den Drehimpuls der Elektronen steuern. Sie haben damit stabile Ein-Quantenbit-Systeme geschaffen, mit denen Information in Form von Elektronspins gespeichert und ausgelesen werden kann.

Der Schritt zum Zwei-Quantenbit-System

Ein Quantenbit allein reicht jedoch noch nicht aus, um das grundlegende Schaltsystem eines Quantencomputers zu erzeugen – hierfür sind zwei Quantenbits nötig. Der entscheidende Schritt zum Zwei-Quantenbit-System bestand für die Konstanzer Forscher darin, die Zustände zweier Elektronen miteinander zu koppeln. Durch diese Verknüpfung lassen sich basale Schaltsysteme konstruieren, mit denen alle Grundoperationen des Quantenrechners ausgeführt werden können. Beispielsweise lässt sich das System so programmieren, dass sich ein Elektron nur genau dann dreht, wenn sein benachbartes Elektron einen Spin in eine vorherbestimmte Richtung aufweist.

Die Konstanzer Wissenschaftler mussten folglich ein stabiles System schaffen, um die Spins zweier einzelner Elektronen miteinander zu verknüpfen. „Das war der wichtigste und schwierigste Teil unserer Arbeit“, erzählt Guido Burkard, der das Verfahren gemeinsam mit Maximilian Russ, einem Mitarbeiter seiner Arbeitsgruppe, entwarf und plante. Sie entwickelten ein Schaltsystem, das die Drehimpulse von zwei Elektronen in gegenseitiger Abhängigkeit koordiniert. Zwischen den beiden „Mulden“, in denen die Silicium-Elektronen schweben, wird eine weitere Nano-Elektrode angebracht. Diese steuert die Schaltung der beiden Elektronenspins. Damit gelang es den Physikern, eine stabile und funktionsfähige Grundrecheneinheit für einen Quantencomputer zu realisieren. Die Fehlersicherheit liegt bei über 99 Prozent beim einzelnen Quantenbit und bislang rund 80 Prozent bei der Interaktion zweier Quantenbits – wesentlich stabiler und präziser als bisherige Versuche.

Silicium – ein „ruhiges Material“

Ausgangsmaterial des Quantengatters ist Silicium. „Ein magnetisch sehr ruhiges Material mit einer geringen Anzahl eigener Kernspins“, fasst Guido Burkard die Vorteile von Silicium zusammen. Wichtig bei dem gewählten Material ist, dass seine Atomkerne nicht zu viele Spins, das heißt Eigendrehimpulse, mit sich bringen, welche die Quantenbits stören könnten. Silicium weist mit einem Anteil von rund fünf Prozent eine extrem niedrige Spin-Aktivität der Atomkerne auf und ist daher in besonderem Maße geeignet. Ein weiterer Vorteil: Silicium ist das Standardmaterial der Halbleitertechnologie und entsprechend gut erforscht, so dass die Wissenschaftler von langjährigen Erfahrungen mit dem Material profitieren.

Originalpublikation: D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, J. R. Petta, Quantum CNOT Gate for Spins in Silicon, Science 07 December 2017

Faktenübersicht:

- Meilenstein für die Entwicklung des Quantencomputers – aktuelle Veröffentlichung im Wissenschaftsjournal Science, in der Online-Ausgabe First Release vom 7. Dezember 2017

- Physiker aus Konstanz, Princeton und Maryland entwickeln ein stabiles Quantengatter für Zwei-Quantenbit-Systeme aus Silicium.

- Dieses Quantengatter kann alle notwendigen Grundoperationen des Quantencomputers ausführen.

- Als Informationsspeicher („Quantenbit“) nutzt das Quantengatter den Elektronenspin (Eigendrehimpuls eines Elektrons) von einzelnen Silicium-Elektronen.

- Die Fehlersicherheit liegt bei über 99 Prozent beim einzelnen Quantenbit und bislang rund 80 Prozent bei der Interaktion zweier Quantenbits.

- Beteiligte Einrichtungen: Universität Konstanz, Princeton University (USA), National Institute of Standards and Technology (USA), University of Maryland (USA)

Hinweis an die Redaktionen:
Ein Bild kann im Folgenden heruntergeladen werden: https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Bilder/Burkard_Quanteng...

Bildunterschrift: Quantengatter aus zwei Silicium-Elektronen. Die Drehimpulse der beiden Elektronen werden durch zwei Nano-Elektroden (VL und VR) kontrolliert. Eine dritte Nano-Elektrode (VM) koordiniert die Interaktion beider Elektronen.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten

20.07.2018 | Biowissenschaften Chemie

Staus im Gehirn: FAU-Forscher identifizieren eine Ursache für Parkinson

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics