Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spintronik: Physiker aus Halle und Regensburg entwickeln neue Theorie zu Spinwellen in Magnetfeldern

16.09.2015

Physiker der Martin-Luther-Universität Halle-Wittenberg (MLU) und der Universität Regensburg haben aufgrund von Experimenten eine neue Theorie entwickelt, um die nicht-linearen Eigenschaften sogenannter Spinwellen bei kleinen Magnetfeldern besser beschreiben zu können.

Mit Hilfe des neuen Modells können Vorhersagen zum Verhalten dieser Wellen schneller und genauer getroffen werden. Das Verständnis dieser nicht-linearen Eigenschaften von Spinwellen wird zum Beispiel für die Entwicklung neuer Speichertechnologien benötigt. Die Ergebnisse wurden soeben im Fachjournal „Nature Communications“ veröffentlicht.

In der Spintronik nutzen Wissenschaftler die magnetischen Eigenschaften von Elektronen aus. Eine zentrale Eigenschaft ist dabei der sogenannte Spin, eine Art Eigendrehimpuls, der ein magnetisches Moment bewirkt.

Die einzelnen magnetischen Momente sind in einem ferromagnetischen Material gekoppelt und parallel ausgerichtet. Werden diese Momente nacheinander ausgelenkt, so breitet sich die Anregung wellenartig aus. „Spinwellen beschreiben den kollektiven Anregungszustand von magnetischen Systemen", erläutert Prof. Dr. Georg Woltersdorf vom Institut für Physik an der MLU.

Magnetische Materialien werden heute in der Informations- und Speichertechnologie genutzt, um immer kleinere und schnellere Speicher herstellen zu können, zum Beispiel Festplatten von Computern. So können Daten inzwischen in einer nur wenige Nanometer dicken magnetischen Schicht gespeichert werden.

„Damit das funktioniert, ist es wichtig, dass die magnetischen Momente ihren Zustand mit der Zeit nicht verändern", erklärt Woltersdorf weiter. Zum Umschalten sind große Magnetfelder erforderlich. „Eine Alternative ist die resonante Anregung mit magnetischen Wechselfeldern im Gigaherzbereich. Dabei werden große Amplituden erreicht und die Magnetisierung reagiert nicht-linear."

Damit diese Technologie funktionieren kann, sind korrekte Vorhersagen zum Verhalten der Spinwellen innerhalb der Bauteile nötig. Die bisherigen Modelle, um dieses Verhalten zu beschreiben, waren aber bei kleinen Magnetfeldern nicht anwendbar: „Die Theorie der Suhl-Instabilität konnte zwar korrekt die nicht-lineare Magnetisierungsdynamik bei großen Magnetfeldern vorhersagen. Bei kleinen Magnetfeldern war sie aber nicht anwendbar." Gerade dieser Fall ist jedoch für manche Bauelemente in der Spintronik von großem Interesse.

Ihre Experimente haben die Wissenschaftler am Synchrotron BESSY II des Helmholtz Zentrums Berlin durchgeführt. Dabei handelt es sich um eine deutschlandweit einzigartige Großforschungsanlage, an der sich Röntgenstrahlung erzeugen lässt, deren Energie und Polarisation exakt eingestellt werden kann. „Man kann sich den Synchrotron ähnlich einem Fotoapparat mit extrem schnellen Blitzlicht vorstellen.

Da die Röntgenstrahlung gepulst erzeugt wird, sind Experimente mit einer Zeitauflösung von einigen Pikosekunden möglich ", erläutert Woltersdorf. Mit dem Experiment konnten die Forscher die magnetische Resonanz messen und dabei die Amplitude der Magnetisierung exakt bestimmen.

Anhand dieser Beobachtungen konnten die Physiker eine neue und verbesserte Theorie entwickeln: „Wir haben jetzt nicht nur ein genaueres Verständnis davon, wie nicht-lineare Dynamik bei kleinen Magnetfeldern abläuft", so Woltersdorf. „Unser Modell lässt sich sowohl bei kleinen als auch bei großen Magnetfeldern anwenden."

Mit der Veröffentlichung schließt Georg Woltersdorf eine Arbeit ab, die er in seiner Zeit an der Regensburger Universität im Rahmen eines durch das Bundesministerium für Bildung und Forschung geförderten Projekts begonnen hat. 2013 wechselte er an die MLU, um den Lehrstuhl für Experimentelle Physik, Optik und zeitaufgelöste Spektroskopie zu übernehmen.

Er transferierte damit auch sein Projekt „Electric Control of Magnetization Dynamics" an die MLU, das die Eigenschaften von Nanomagneten erforscht. Gefördert wird es durch den Europäischen Forschungsrat mit einem ERC Starting Grant über fünf Jahre und mit einem Volumen von 1,5 Millionen Euro. Im Rahmen des EU-geförderten Projekts „Electric Control of Magnetization Dynamics (ECOMAGICS)" untersucht Woltersdorf außerdem neue Methoden zur Kontrolle der Magnetisierungsdynamik im Nanometerbereich, die auf elektrischen Feldern basieren.

Angaben zur Publikation:
Bauer, H. G. et al. Nonlinear spin-wave excitations at low magnetic bias fields. Nat. Commun. 6:8274 doi: 10.1038/ncomms9274 (2015).

Corinna Bertz | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-halle.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics