Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinströme: Riesengroß und ultraschnell

23.05.2016

Mit einer neuen Methode der TU Wien lassen sich extrem starke Spinströme herstellen. Sie sind wichtig für die Spintronik, die unsere herkömmliche Elektronik ablösen könnte.

In unseren Computerchips wird Information in Form von elektrischer Ladung übertragen. Elektronen oder andere Ladungsträger werden von einem Ort zum anderen transportiert. Seit Jahren forscht man an Bauteilen, die statt mit der Ladung der Elektronen mit ihrem Drehimpuls, dem Spin, arbeiten. Gegenüber der herkömmlichen Elektronik hat diese neue Herangehensweise, die „Spintronik“, große Vorteile, sie kann mit viel weniger Energie auskommen.


Der Laserpuls trifft auf Nickel (grün). Elektronen, deren Spin nach oben zeigt (rot) wechseln in das Silizium (gelb). Aus dem Silizium wechseln Elektronen beider Spinrichtungen zurück.

TU Wien

Allerdings ist es schwierig, überhaupt einen Spinstrom ohne Ladungsstrom zu erzeugen, wie man ihn in der Spintronik benötigt. Physiker der TU Wien schlagen nun im Fachjournal „Physical Review Letters“ eine neue Methode vor, die in extrem kurzer Zeit gewaltige Spinströme produziert. Der Trick liegt in der Verwendung ultrakurzer Laserpulse.

Der Magnet auf dem Halbleiter

Der Spin eines Elektrons kann zwei verschiedene Zustände annehmen – man spricht von „Spin nach oben“ und „Spin nach unten“. Dieser Elektronenspin ist auch für den Ferromagnetismus verantwortlich. Wenn sich viele Elektronenspins in einem Metall in dieselbe Richtung ausrichten, dann entsteht ein Magnetfeld. Daher ist es naheliegend, auch für die Erzeugung von Spinströmen Ferromagneten zu verwenden.

„Es gibt Versuche, Magneten mit Halbleitern zu kombinieren und einfach einen Strom durchzuleiten“, sagt Marco Battiato vom Institut für Festkörperphysik der TU Wien. „Man will auf diese Weise einen Strom von Elektronen mit möglichst einheitlichem Spin erzeugen, den man dann für Spintronik-Schaltungen verwenden könnte. Doch die Effizienz ist sehr gering.“

Marco Battiato und Karsten Held forschten an der TU Wien an einem anderen Weg: Sie simulierten am Computer, wie sich die Elektronen verhalten, wenn man eine dünne Schicht Nickel auf einem Stück Silizium aufbringt und dann mit starken ultrakurzen Laserpulsen beschießt. „Ein solcher Laserpuls hat eine gewaltige Wirkung auf die Elektronen im Nickel“, erklärt Prof. Karsten Held. Sie werden mit ungeheurer Wucht von ihren Plätzen gefegt und bewegen sich Richtung Silizium.

An der Grenze zwischen Nickel und Silizium, entsteht dadurch sehr rasch ein elektrisches Feld, der elektrische Ladungs-Strom hört daher auf zu fließen. Elektronen wandern zwar weiterhin zwischen Nickel und Silizium hin und her, aber dies gleicht sich aus, insgesamt findet kein Ladungstransport mehr statt.

Spin nach oben und Spin nach unten

Doch auch wenn keine elektrische Ladung mehr transportiert wird, kann immer noch Spin transportiert werden. „Im Nickel bewegen sich zunächst sowohl Elektronen mit Spin nach oben wie auch Elektronen mit Spin nach unten“, sagt Karsten Held. „Allerdings haben die Atome des Metalls auf diese beiden Sorten von Elektronen eine unterschiedliche Wirkung. Die Elektronen mit Spin nach oben können sich recht ungehindert bewegen. Die Elektronen mit Spin nach unten haben eine viel größere Wahrscheinlichkeit, an Nickel-Atomen gestreut zu werden.“

Wenn die Elektronen gestreut werden, dann ändern sie ihre Richtung und verlieren Energie. Die Elektronen, die auf geradem Weg mit hoher Energie zur Grenzschicht zwischen Nickel und Silizium gelangen, haben daher in großer Mehrheit Spin nach oben. Elektronen, die den entgegengesetzten Weg nehmen, nehmen hingegen beide Spin-Möglichkeiten mit ähnlicher Wahrscheinlichkeit an.

Dieser spinabhängige Unterschied führt dazu, dass schließlich im Silizium Spin-nach-oben dominiert. Es ist gelungen, in den Halbleiter Silizium einen Spinstrom ohne Ladungsstrom zu injizieren. „Unsere Berechnungen zeigen, dass diese Spin-Polarisierung extrem stark ist – viel stärker als man sie mit anderen Methoden erreichen könnte“, sagt Marco Battiato.

„Außerdem lässt sich dieser Spinstrom innerhalb von Femtosekunden erzeugen.“ Geschwindigkeit ist wichtig: Unsere modernen Prozessoren arbeiten mit Taktfrequenzen im Gigahertz-Bereich, somit sind Milliarden Rechenoperationen pro Sekunde möglich. Will man das steigern und in den Terahertz-Bereich vordringen, braucht man Bauteile, die auf entsprechend kurzen Zeitskalen reagieren können.

Bisher gibt es die neue Methode nur in der Computersimulation, doch Battiato und Held stehen bereits in Kontakt mit anderen Forschungsgruppen, die den Laser-getriggerten Spinfluss experimentell messen wollen. „Die Spintronik hat gute Chancen, eine Schlüsseltechnologie der nächsten Jahrzehnte zu werden“, sagt Battiato. „Mit unserer Spin-Injektionsmethode hat man nun erstmals die Möglichkeit, ultraschnelle, extrem starke Spinströme herzustellen.“

Originalpublikation:
M. Battiato and K. Held, Phys. Rev. Lett. 116, 196601, DOI: 10.1103/PhysRevLett.116.196601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.196601

Rückfragehinweise:

Prof. Karsten Held
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13710
karsten.held@tuwien.ac.at

Dr. Marco Battiato
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13768
marco.battiato@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen
09.07.2020 | Universität Hamburg

nachricht Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs
09.07.2020 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

09.07.2020 | Physik Astronomie

Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen

09.07.2020 | Biowissenschaften Chemie

Selbstadaptive Systeme: KI übernimmt Arbeit von Software-Ingenieuren

09.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics