Spinströme aus Abwärme: Forscherteam legt neue Erkenntnisse über magnetische Spinwellen vor

Durch die thermische Anregung der drei magnetisch gekoppelten Untergitter, bestehend aus zwei Eisen-Gitter (Fe) und einem Gadolinium-Gitter (Gd), kommt es zur Emission einer magnetischen Gitterschwingung, eines Magnons. Abb./©: Andreas Kehlberger, JGU

Einem internationalen Forscherteam ist es gelungen, neue Erkenntnisse über magnetische Spinwellen zu erhalten. Die Spinwellen können in elektrisch nichtleitenden Materialien durch ein Temperaturgefälle entstehen und dann in einer benachbarten metallischen Schicht in elektrische Ströme umgewandelt werden.

Aus Wärme kann somit elektrische Energie entstehen. Das Prinzip, das erst vor kurzer Zeit entschlüsselt wurde, bietet für die Zukunft neue Möglichkeiten, Abwärme rückzugewinnen und damit Prozesse energieeffizienter und umweltfreundlicher zu gestalten.

An dem gemeinsamen Forschungsprojekt sind Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU), des Walther-Meißner-Instituts (WMI) in Garching, der Tohoku University, Japan, und der Delft University of Technology, Niederlande, beteiligt. Die Forschungsarbeit wurde im Fachmagazin Nature Communications publiziert.

Magnetische Spinwellen, auch Magnonen genannt, sind elementare magnetische Anregungen, durch die der Drehimpuls und Energie und damit Informationen innerhalb von magnetischen Festkörpern transportiert werden können. Weil die Existenz der magnetischen Wellen an den Festkörper gekoppelten ist, lassen sich diese jedoch nur schwer nachweisen.

In dem gemeinsamen Projekt konnten die Forscher zeigen, dass auch in komplexen, aus mehreren magnetischen Atomsorten aufgebauten Materialien Magnonen durch Wärmetransport angeregt werden. Grundlage für den Nachweis bildet der Spin-Seebeck-Effekt, dessen Ursprung ebenfalls erst vor Kurzem verstanden wurde.

Die neuen Ergebnisse zeigen außerdem, dass es durch den Spin-Seebeck-Effekt möglich ist, fundamentale Eigenschaften des Systems auf einfache Weise zu erfassen und das komplexe Wechselspiel der einzelnen magnetischen Unterstrukturen zu bestimmen.

Der Spin-Seebeck-Effekt stellt einen sogenannten Spin-thermoelektrischen Effekt dar, der es möglich macht, sogar in elektrisch nichtleitenden Materialien thermische Energie in elektrische Energie umzuwandeln. Im Gegensatz zu konventionellen thermoelektrischen Effekten kann damit in magnetischen Isolatoren, die mit einer dünnen Metallschicht kombiniert werden, Wärmeenergie rückgewonnen werden. Forschern der JGU war es vor kurzer Zeit gelungen, den Ursprung des Effekts auf die thermisch angeregten magnetischen Wellen in Festkörpern, also die Magnonen, zurückzuführen.

Basierend auf dieser Erkenntnis haben die beteiligten Wissenschaftler nun neue Untersuchungen an komplexeren magnetischen Materialien, sogenannten kompensierten Ferrimagneten, durchgeführt. Temperaturabhängige Untersuchungen dieser Materialien mittels des Spin-Seebeck-Effekts offenbarten ein einzigartiges und somit charakteristisches Signalverhalten, das neue Erkenntnisse über die dem Effekt zugrundeliegenden Magnonen und deren Verteilung liefert.

„Als ich zum ersten Mal unsere komplexen Messdaten gesehen habe, hätte ich nicht für möglich gehalten, wie viele Informationen wir über das umfassende Wechselspiel innerhalb des Materials gewinnen können. All dies war nur durch die gute Zusammenarbeit mit unseren nationalen und internationalen Kollegen möglich“, betont Andreas Kehlberger, Mitarbeiter in der Forschergruppe von Univ.-Prof. Dr. Mathias Kläui, der kürzlich seine Promotion als Stipendiat der Exzellenz-Graduiertenschule „Materials Science in Mainz“ (MAINZ) an der JGU abgeschlossen hat.

„Ich freue mich, dass dieses spannende Ergebnis in Zusammenarbeit zwischen einem Doktoranden der Exzellenz-Graduiertenschule Materials Science in Mainz in meiner Gruppe und Kollegen aus Garching, mit denen wir im Rahmen des DFG-Schwerpunktprogramms ‚Spin Caloric Transport‘ kollaborieren, entstanden ist“, so Mathias Kläui, Direktor der Exzellenz-Graduiertenschule MAINZ. „Es zeigt, dass komplexe Forschung erst in Teams möglich wird – bestenfalls gefördert, wie in diesem Fall durch das DAAD SpinNet-Austauschprogramm mit der Tohoku Universität.“

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Stephan Geprägs et al.
Origin of the spin Seebeck effect in compensated ferrimagnets
Nature Communications, 4. Februar 2016
DOI: 10.1038/ncomms10452

Weitere Informationen:
Univ.-Prof. Dr. Mathias Kläui
Theorie der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Exzellenz Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Links:
http://www.nature.com/ncomms/2016/160204/ncomms10452/full/ncomms10452.html (Article)
http://www.phmi.uni-mainz.de/9955.php (Pressemitteilung „Hinweise auf Ursprung des Spin-Seebeck-Effekts entdeckt“)
http://www.spinnet.uni-mainz.de (Homepage des SpinNet-Projektes zwischen JGU, Tohoku University, Stanford University und IBM)

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer