Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spinströme aus Abwärme: Forscherteam legt neue Erkenntnisse über magnetische Spinwellen vor

10.02.2016

Grundlagen der Umwandlung von Wärmeströmen in magnonische Spinströme verstanden – Untersuchung an komplexen magnetischen Materialien

Einem internationalen Forscherteam ist es gelungen, neue Erkenntnisse über magnetische Spinwellen zu erhalten. Die Spinwellen können in elektrisch nichtleitenden Materialien durch ein Temperaturgefälle entstehen und dann in einer benachbarten metallischen Schicht in elektrische Ströme umgewandelt werden.


Durch die thermische Anregung der drei magnetisch gekoppelten Untergitter, bestehend aus zwei Eisen-Gitter (Fe) und einem Gadolinium-Gitter (Gd), kommt es zur Emission einer magnetischen Gitterschwingung, eines Magnons.

Abb./©: Andreas Kehlberger, JGU

Aus Wärme kann somit elektrische Energie entstehen. Das Prinzip, das erst vor kurzer Zeit entschlüsselt wurde, bietet für die Zukunft neue Möglichkeiten, Abwärme rückzugewinnen und damit Prozesse energieeffizienter und umweltfreundlicher zu gestalten.

An dem gemeinsamen Forschungsprojekt sind Wissenschaftler der Johannes Gutenberg-Universität Mainz (JGU), des Walther-Meißner-Instituts (WMI) in Garching, der Tohoku University, Japan, und der Delft University of Technology, Niederlande, beteiligt. Die Forschungsarbeit wurde im Fachmagazin Nature Communications publiziert.

Magnetische Spinwellen, auch Magnonen genannt, sind elementare magnetische Anregungen, durch die der Drehimpuls und Energie und damit Informationen innerhalb von magnetischen Festkörpern transportiert werden können. Weil die Existenz der magnetischen Wellen an den Festkörper gekoppelten ist, lassen sich diese jedoch nur schwer nachweisen.

In dem gemeinsamen Projekt konnten die Forscher zeigen, dass auch in komplexen, aus mehreren magnetischen Atomsorten aufgebauten Materialien Magnonen durch Wärmetransport angeregt werden. Grundlage für den Nachweis bildet der Spin-Seebeck-Effekt, dessen Ursprung ebenfalls erst vor Kurzem verstanden wurde.

Die neuen Ergebnisse zeigen außerdem, dass es durch den Spin-Seebeck-Effekt möglich ist, fundamentale Eigenschaften des Systems auf einfache Weise zu erfassen und das komplexe Wechselspiel der einzelnen magnetischen Unterstrukturen zu bestimmen.

Der Spin-Seebeck-Effekt stellt einen sogenannten Spin-thermoelektrischen Effekt dar, der es möglich macht, sogar in elektrisch nichtleitenden Materialien thermische Energie in elektrische Energie umzuwandeln. Im Gegensatz zu konventionellen thermoelektrischen Effekten kann damit in magnetischen Isolatoren, die mit einer dünnen Metallschicht kombiniert werden, Wärmeenergie rückgewonnen werden. Forschern der JGU war es vor kurzer Zeit gelungen, den Ursprung des Effekts auf die thermisch angeregten magnetischen Wellen in Festkörpern, also die Magnonen, zurückzuführen.

Basierend auf dieser Erkenntnis haben die beteiligten Wissenschaftler nun neue Untersuchungen an komplexeren magnetischen Materialien, sogenannten kompensierten Ferrimagneten, durchgeführt. Temperaturabhängige Untersuchungen dieser Materialien mittels des Spin-Seebeck-Effekts offenbarten ein einzigartiges und somit charakteristisches Signalverhalten, das neue Erkenntnisse über die dem Effekt zugrundeliegenden Magnonen und deren Verteilung liefert.

„Als ich zum ersten Mal unsere komplexen Messdaten gesehen habe, hätte ich nicht für möglich gehalten, wie viele Informationen wir über das umfassende Wechselspiel innerhalb des Materials gewinnen können. All dies war nur durch die gute Zusammenarbeit mit unseren nationalen und internationalen Kollegen möglich“, betont Andreas Kehlberger, Mitarbeiter in der Forschergruppe von Univ.-Prof. Dr. Mathias Kläui, der kürzlich seine Promotion als Stipendiat der Exzellenz-Graduiertenschule „Materials Science in Mainz" (MAINZ) an der JGU abgeschlossen hat.

„Ich freue mich, dass dieses spannende Ergebnis in Zusammenarbeit zwischen einem Doktoranden der Exzellenz-Graduiertenschule Materials Science in Mainz in meiner Gruppe und Kollegen aus Garching, mit denen wir im Rahmen des DFG-Schwerpunktprogramms ‚Spin Caloric Transport‘ kollaborieren, entstanden ist", so Mathias Kläui, Direktor der Exzellenz-Graduiertenschule MAINZ. „Es zeigt, dass komplexe Forschung erst in Teams möglich wird – bestenfalls gefördert, wie in diesem Fall durch das DAAD SpinNet-Austauschprogramm mit der Tohoku Universität."

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.

Veröffentlichung:
Stephan Geprägs et al.
Origin of the spin Seebeck effect in compensated ferrimagnets
Nature Communications, 4. Februar 2016
DOI: 10.1038/ncomms10452


Weitere Informationen:
Univ.-Prof. Dr. Mathias Kläui
Theorie der kondensierten Materie
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-23633
E-Mail: klaeui@uni-mainz.de
http://www.klaeui-lab.physik.uni-mainz.de/308.php

Exzellenz Graduiertenschule Materials Science in Mainz
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26984
Fax +49 6131 39-26983
E-Mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Weitere Links:
http://www.nature.com/ncomms/2016/160204/ncomms10452/full/ncomms10452.html (Article)
http://www.phmi.uni-mainz.de/9955.php (Pressemitteilung „Hinweise auf Ursprung des Spin-Seebeck-Effekts entdeckt“)
http://www.spinnet.uni-mainz.de (Homepage des SpinNet-Projektes zwischen JGU, Tohoku University, Stanford University und IBM)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf die Nähe kommt es an: Wie Kristall den Widerstand von Graphen beeinflusst
28.01.2020 | Georg-August-Universität Göttingen

nachricht Wie man ein Bild von einem Lichtpuls macht
27.01.2020 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Im Focus: Integrierte Mikrochips für elektronische Haut

Forscher aus Dresden und Osaka präsentieren das erste vollintegrierte Bauelement aus Magnetsensoren und organischer Elektronik und schaffen eine wichtige Voraussetzung für die Entwicklung von elektronischer Haut.

Die menschliche Haut ist faszinierend und hat viele Funktionen. Eine davon ist der Tastsinn, bei dem vielfältige Informationen aus der Umgebung verarbeitet...

Im Focus: Dresdner Forscher entdecken Mechanismus bei aggressivem Krebs

Enzym blockiert Wächterfunktion gegen unkontrollierte Zellteilung

Wissenschaftler des Universitätsklinikums Carl Gustav Carus Dresden im Nationalen Centrum für Tumorerkrankungen Dresden (NCT/UCC) haben gemeinsam mit einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lichtgetriebene Nanomotoren - Erfolgreich gekoppelt

28.01.2020 | Biowissenschaften Chemie

Warum Gesunde für Kranke so wichtig sind! – Vergleichsstudie geht Fibromyalgie-Syndrom auf den Grund

28.01.2020 | Biowissenschaften Chemie

Kiss and Run: Wie Zellen ihre Bestandteile trennen und recyceln

28.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics