Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spins haltbar gemacht

19.12.2016

An der Universität Regensburg beschäftigen sich Physiker in einem von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Sonderforschungsbereich „Spinphänomene in reduzierten Dimensionen (SFB 689)“ mit der Spinelektronik. Eine Arbeitsgruppe um Prof. Dr. John Schliemann, Professur für Theoretische Physik, erforscht seit mehr als zehn Jahren die Strukturen von Spins und hat jetzt herausgefunden, dass persistente Strukturen auch in allgemeinerer Geometrie möglich sind.

In der elektronischen Datenverarbeitung werden typischerweise Elektronen aufgrund ihrer elektrischen Ladung in Halbleiterstrukturen bewegt. Zur Speicherung von Information in magnetischen Medien wird hingegen das magnetische Moment, d. h. der Spin, der Elektronen verwendet.


Die persistente Spinhelix. Die magnetischen Momente (Pfeile) bilden eine beständige schraubenartige Struktur, die sich über die gesamte Elektronenschicht ausdehnt.

Grafik: Michael Kammermeier

Die Spinelektronik möchte beides verbinden und auch den Elektronenspin zur Datenverarbeitung in Halbleitern nutzen. Ein Hauptproblem der Spinelektronik ist die Dekohärenz infolge von Störstellen und Verunreinigungen in Halbleitern, welche durch die sogenannte Spin-Bahn-Kopplung zu einer endlichen "Lebensdauer" der Elektronenspins führt.

In räumlich zweidimensionalen Schichtstrukturen ("Quantentrögen") können für geeignete Systemparameter jedoch langlebige schraubenförmige Spintexturen ("persistente Spinhelizes") entstehen. An der theoretischen Vorhersage solcher Spinstrukturen war die Arbeitsgruppe von Prof. Dr. John Schliemann bereits im Jahr 2003 unmittelbar beteiligt, die wissenschaftliche Prognose Schliemanns wurde seitdem durch zahlreiche experimentelle Befunde bestätigt.

Die Details solcher Spinhelizes hängen von der Orientierung der zweidimensionalen Schicht relativ zum dreidimensionalen Kristallgitter des Wirtshalbleiters ab. Letzteres ist vom kubischen Typ, so dass man es sich – ähnlich wie beim Kochsalz– aus Würfeln aufgebaut vorstellen kann. Ein Würfel besitzt drei verschiedene Sorten von Spiegelebenen, die den Würfel (und damit das Kristallgitter) ineinander überführen.

Bislang konzentrierten sich die Untersuchungen auf jene drei Symmetrieebenen des zugrundeliegenden kubischen Gitters. Die Arbeitsgruppe um Prof. Dr. John Schliemann konnte jedoch vor kurzem zeigen, dass derartige persistente Strukturen auch in allgemeinerer Geometrie möglich sind und hierfür notwendige und hinreichende Bedingungen ableiten. Im Ergebnis kann die Elektronenschicht auch "schief" im Halbleiter liegen und dennoch perfekte Spinkohärenz aufweisen.

Diese Ergebnisse dürften für weitere Belebung der intensiven experimentellen Untersuchungen sorgen, von der Fachzeitschrift Physical Review Letters wurden sie im Dezember 2016 als Titelthema ausgewählt: https://doi.org/10.1103/PhysRevLett.117.236801)

Ansprechpartner für Medienvertreter:
Prof. Dr. John Schliemann
Universität Regensburg
Professur für Theoretische Physik
Telefon: 0941 943-2037
E-Mail: john.schliemann@physik.uni-regensburg.de

Claudia Kulke | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics