Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spins haltbar gemacht

19.12.2016

An der Universität Regensburg beschäftigen sich Physiker in einem von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Sonderforschungsbereich „Spinphänomene in reduzierten Dimensionen (SFB 689)“ mit der Spinelektronik. Eine Arbeitsgruppe um Prof. Dr. John Schliemann, Professur für Theoretische Physik, erforscht seit mehr als zehn Jahren die Strukturen von Spins und hat jetzt herausgefunden, dass persistente Strukturen auch in allgemeinerer Geometrie möglich sind.

In der elektronischen Datenverarbeitung werden typischerweise Elektronen aufgrund ihrer elektrischen Ladung in Halbleiterstrukturen bewegt. Zur Speicherung von Information in magnetischen Medien wird hingegen das magnetische Moment, d. h. der Spin, der Elektronen verwendet.


Die persistente Spinhelix. Die magnetischen Momente (Pfeile) bilden eine beständige schraubenartige Struktur, die sich über die gesamte Elektronenschicht ausdehnt.

Grafik: Michael Kammermeier

Die Spinelektronik möchte beides verbinden und auch den Elektronenspin zur Datenverarbeitung in Halbleitern nutzen. Ein Hauptproblem der Spinelektronik ist die Dekohärenz infolge von Störstellen und Verunreinigungen in Halbleitern, welche durch die sogenannte Spin-Bahn-Kopplung zu einer endlichen "Lebensdauer" der Elektronenspins führt.

In räumlich zweidimensionalen Schichtstrukturen ("Quantentrögen") können für geeignete Systemparameter jedoch langlebige schraubenförmige Spintexturen ("persistente Spinhelizes") entstehen. An der theoretischen Vorhersage solcher Spinstrukturen war die Arbeitsgruppe von Prof. Dr. John Schliemann bereits im Jahr 2003 unmittelbar beteiligt, die wissenschaftliche Prognose Schliemanns wurde seitdem durch zahlreiche experimentelle Befunde bestätigt.

Die Details solcher Spinhelizes hängen von der Orientierung der zweidimensionalen Schicht relativ zum dreidimensionalen Kristallgitter des Wirtshalbleiters ab. Letzteres ist vom kubischen Typ, so dass man es sich – ähnlich wie beim Kochsalz– aus Würfeln aufgebaut vorstellen kann. Ein Würfel besitzt drei verschiedene Sorten von Spiegelebenen, die den Würfel (und damit das Kristallgitter) ineinander überführen.

Bislang konzentrierten sich die Untersuchungen auf jene drei Symmetrieebenen des zugrundeliegenden kubischen Gitters. Die Arbeitsgruppe um Prof. Dr. John Schliemann konnte jedoch vor kurzem zeigen, dass derartige persistente Strukturen auch in allgemeinerer Geometrie möglich sind und hierfür notwendige und hinreichende Bedingungen ableiten. Im Ergebnis kann die Elektronenschicht auch "schief" im Halbleiter liegen und dennoch perfekte Spinkohärenz aufweisen.

Diese Ergebnisse dürften für weitere Belebung der intensiven experimentellen Untersuchungen sorgen, von der Fachzeitschrift Physical Review Letters wurden sie im Dezember 2016 als Titelthema ausgewählt: https://doi.org/10.1103/PhysRevLett.117.236801)

Ansprechpartner für Medienvertreter:
Prof. Dr. John Schliemann
Universität Regensburg
Professur für Theoretische Physik
Telefon: 0941 943-2037
E-Mail: john.schliemann@physik.uni-regensburg.de

Claudia Kulke | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics