Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So heiß wie im Inneren der Sonne

05.06.2019

Physiker der Friedrich-Schiller-Universität Jena erstellen erstmals Plasma mithilfe von Nanoröhrchen und langwelligem, kurzgepulsten Laser

Die drei klassischen Aggregatzustände fest, flüssig und gasförmig lassen sich in jeder normalen Küche beobachten, wenn man beispielsweise einen Eiswürfel zum Kochen bringt.


In einem Labor des Instituts für Optik und Quantenelektronik der Universität Jena bereiten Dr. Zhanna Samsonova und Dr. Daniil Kartashov ein Experiment am JETI-Laser vor.

Foto: Jan-Peter Kasper/FSU

Doch erhitzt man Materie noch weiter, so dass die Atome eines Stoffes zusammenstoßen und sich dadurch die Elektronen von ihnen abtrennen, dann erreicht man einen weiteren Zustand: Plasma.

Über 99 Prozent der Materie im Weltall liegt in dieser Form vor, so etwa im Inneren von Sternen. Kein Wunder also, dass Physiker ein großes Interesse daran haben, solche Materie zu untersuchen. Doch Plasmen mit hoher Temperatur und Druck wie in den Sternen auf der Erde zu erzeugen und zu erforschen, ist aus verschiedenen Gründen alles andere als einfach.

Physiker der Friedrich-Schiller-Universität Jena haben nun aber eine neue Methode entwickelt, mit der sie einige der Probleme während der Plasmaproduktion in den Griff bekommen können. Über ihre Ergebnisse berichten sie im renommierten Forschungsjournal „Physical Review X“.

Nanodrähte lassen Licht durch

„Um Materie so erhitzen zu können, dass sich ein Plasma bildet, brauchen wir entsprechend hohe Energie. In der Regel nutzen wir dazu Licht in Form eines großen Lasers“, erklärt Christian Spielmann von der Universität Jena.

„Dieser muss aber sehr kurz gepulst sein, damit die Materie nicht sofort expandiert, wenn sie die entsprechende Temperatur erreicht hat, sondern für einen kurzen Zeitraum als dichtes Plasma zusammenhält.“

Bei diesem Versuchsaufbau trete aber ein Problem auf: „Wenn der Laser auf die Probe trifft, entsteht zwar ein Plasma. Dieses reagiert aber sofort wie ein Spiegel und reflektiert einen Großteil der eintreffenden Energie, die somit nicht in die komplette Materie durchdringt. Je länger die Wellenlänge vom Laserimpuls ist, desto kritischer wird das Problem“, sagt Zhanna Samsonova, die federführend am Projekt beteiligt war.

Um diesen Spiegeleffekt zu vermeiden, haben die Jenaer Forscher Proben aus Siliziumdrähten verwendet, deren Durchmesser mit einigen hundert Nanometern kleiner ist als die Wellenlänge des eintreffenden Lichts, die etwa vier Mikrometer betrug. „Wir haben erstmals einen solch langwelligen Laser bei der Plasmaanregung zum Einsatz gebracht“, sagt Spielmann.

„Das Licht dringt zwischen den Drähten in die Probe ein und erhitzt diese von allen Seiten, so dass für wenige Pikosekunden ein Plasma über ein wesentlich größeres Volumen entsteht, als wenn der Laser reflektiert worden wäre. Etwa 70 Prozent der Energie gelangt in die Probe.“

Dank des kurzen Laserpulses besteht das erhitzte Material zudem ein wenig länger, bevor es expandiert. Mithilfe von Röntgenstrahlspektroskopie können die Wissenschaftler schließlich wertvolle Informationen über den Zustand des Materials sammeln.

Höchstwerte in Temperatur und Dichte

„Mit unserer Methode lassen sich in einem Labor neue Höchstwerte in Temperatur und Dichte erreichen“, sagt Spielmann. Das Plasma sei mit etwa zehn Millionen Kelvin weitaus heißer als etwa Material an der Oberfläche der Sonne.

Der Jenaer Physiker verweist zudem auf die Kooperationspartner innerhalb des Projektes: Für die Laserexperimente nutzten die Jenaer Experten eine entsprechende Einrichtung an der TU Wien, die Proben stammen von der Physikalisch-Technischen Bundesanstalt in Braunschweig, Computersimulationen zur Bestätigung der Erkenntnisse stammen von Kollegen aus Darmstadt und Düsseldorf.

Die Ergebnisse der Jenaer Physiker sind ein bahnbrechender Erfolg, bieten sie der Plasmaforschung doch ganz neue Voraussetzung. Theorien zum Zustand von Plasma können direkt durch Experimente und daran anschließende Computersimulationen verifiziert werden.

Kosmologische Vorgänge lassen sich so besser verstehen. Außerdem leisten die Wissenschaftler wertvolle Vorarbeiten für die Installation von Großgeräten. So entsteht etwa in Darmstadt derzeit der internationale Teilchenbeschleuniger „Facility for Antiproton and Ion Research“ (FAIR), der etwa 2025 in Betrieb gehen soll. Dank der Informationen lassen sich Bereiche herausfiltern, auf die ein genauerer Blick lohnt.

Wissenschaftliche Ansprechpartner:

Dr. Zhanna Samsonova / Prof. Dr. Christian Spielmann
Institut für Optik und Quantenelektronik der Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641/947214, 03641/947231
E-Mail: zhanna.samsonova[at]uni-jena.de, christian.spielmann[at]uni-jena.de

Originalpublikation:

Zhanna Samsonova, et al.: Relativistic Interaction of Long-Wavelength Ultrashort Laser Pulses with Nanowires, Physical Review X, 2019, DOI: 10.1103/PhysRevX.9.021029

Sebastian Hollstein | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics