Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silicon Valley im Wiener Prater

23.03.2010
ForscherInnen am Atominstitut der Technischen Universität (TU) Wien freuen sich über die Akkreditierung ihres in Österreich einzigartigen Röntgenlabors.

Mithilfe einer zerstörungsfreien Analysemethode werden hier Siliziumträgerplatten ("Wafer") unter Reinraumbedingungen untersucht.

Wien (TU). - Im frisch akkreditieren Röntgenlabor des Atominstituts werden mit TXRF (Total-Reflection X-ray Fluorescence Analysis, Totalreflexions-Röntgenfluoreszenzanalyse) unter Verwendung intensiver Röntgenstrahlung Oberflächen von "Silizum Wafern" auf anorganische Verunreinigungen durch Elemente von Kalium (K) bis Blei (Pb) untersucht.

Die Untersuchungsobjekte (maximale Größe 200 mm Durchmesser) werden von einem Robotsystem vollautomatisch in das Spektrometer eingebracht, bestrahlt und die dabei entstehende, charakteristische Strahlung der Elemente gemessen. Es handelt sich um eine in Österreich einzigartige Methode, die eine extrem hohe Nachweisempfindlichkeit im Ultraspurenbereich von bis zu 1010 Atomen pro cm2 erlaubt. "Es ist kaum vorstellbar, wie gering die Menge ist, die wir hier im Labor noch nachweisen können", erklärt Laborleiterin Prof. Christina Streli.

Zum Vergleich: Selbst mit einem einzelnen Fingerabdruck hinterlässt ein Mensch mehr Materie auf einer Oberfläche als jene Menge die hier aufgespürt werden kann.

Interessant ist die Forschungsarbeit am Laborstandort Stadionallee im Wiener Prater vor allem für die Halbleiterindustrie. Silizium-Wafer sind runde, 0.5 mm dicke Scheiben mit einem Durchmesser von bis zu 400 mm. Auf ihnen befinden sich elektronische oder mikromechanische Bauelemente. Um die Qualität, Funktion und Lebensdauer dieser Halbleiterelemente zu verbessern und um Kosten zu reduzieren, sind Aufspüren und Analyse von Kontaminierungen durch Atome anderer Stoffe von enormer Wichtigkeit.

Mit Brief und Siegel

Das akkreditierte Spektrometer Atomika 8030W, das im Labor nach ISO 17025 (Akkreditierungsnorm) verwendet wird, ist der ganze Stolz des Forschungsteams. Der Qualitätsmanager des Labors, Dr. Peter Kregsamer, hat den arbeitsintensiven, dreijährigen Prozess bis zur Akkreditierung begleitet und berichtet: "Die aufwändige Dokumentation, die Berücksichtigung aller Auflagen und die Koordination der Gutachten haben Zeit gekostet, aber der Erfolg gibt uns Recht." Das Bundesministerium für Wirtschaft, Familie und Jugend hat den Akkreditierungsbescheid in der vergangenen Woche zugestellt.

StudentInnen von Anfang an dabei

Ein wichtiger Aspekt bei der Arbeit im Röntgenlabor ist die Einbindung von Studierenden in Forschungsprojekte. Derzeit unterstützen eine Diplomandin und eine Dissertantin als "Process technicians in training" im Rahmen ihres Physikstudiums die WissenschafterInnen. Sie ergänzen dadurch ihre Fähigkeiten in Qualitätsmanagement, -sicherung, - kontrolle und -verbesserung.

ANNA vernetzt ForscherInnen in "Golden Labs"

Das Atominstitut ist aktiver Partner von ANNA (Analytical Network for Nanotechnology). Das EU-Projekt fördert die Kooperation von unabhängig arbeitenden Labors in der Mikro- und Nanoelektronik. Es verbessert die Verfügbarkeit von analytischer Infrastruktur. "Wir stellen unser Labor im Rahmen von ANNA für ausländische AntragstellerInnen kostenlos zur Verfügung. Der transnationale Zugang erhöht die Entwicklung der standortübergreifenden Labors. Und schließlich sind die Einrichtungen der ausländischen Partner für TU-MitarbeiterInnen ebenfalls von Interesse", erklärt Christina Streli. In Form von "Golden Laboratories" sollen akkreditierte, unabhängig arbeitende Labors, zu einem kollaborierenden synergetischen Netzwerk von analytisch arbeitenden WissenschafterInnen und Institutionen zusammengefasst werden.

Weltweit konzentriert sich ein enormer Forschungs- und Entwicklungsaufwand in der Mikro- und Nanoelektronik derzeit auf das Verständnis und die Kontrolle von Materialeigenschaften im Bereich atomarer Dimensionen.

Fotodownload: http://www.tuwien.ac.at/index.php?id=10029
Videolink: http://www.youtube.com/watch?v=M--bkyjH2Gc
Links:
Atoministitut http://www.ati.ac.at
ANNA http://www.i3-anna.org
Rückfragehinweise:
Technische Universität Wien
Atominstitut
Forschungsbereich Strahlenphysik
Stadionallee 2, 1020 Wien
Ao.Univ.Prof. DI Dr. Christina Streli
Laborleiterin
T: +43 (1) 58801 - 141 30
streli@ati.ac.at
DI Dr. Peter Kregsamer
Qualitymanager
T: +43 (1) 58801 - 141 33
peter.kregsamer@tuwien.ac.at
Aussenderin:
Technische Universität Wien
Büro für Öffentlichkeitsarbeit
Bettina Neunteufl, MAS
Operngasse 11/E011
1040 Wien
T: +43 1 58801 41025
bettina.neunteufl@tuwien.ac.at

Werner Sommer | idw
Weitere Informationen:
http://www.tuwien.ac.at/pr

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

nachricht NOEMA: Halbzeit für das im Bau befindliche Superteleskop
20.09.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics