Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signal aus der Vergangenheit des Universums: Zweites Gravitationswellensignal beobachtet

16.06.2016

Wissenschaftlerinnen und Wissenschaftler der LIGO-Virgo-Collaboration (LVC) haben vor kurzem ein weiteres Gravitationswellensignal beobachtet, das nach der Kollision zweier Schwarzer Löcher entstanden ist. Das berichten sie am heutigen Mittwoch, dem 15. Juni 2016, auf der Konferenz der American Astronomical Society (AAS) in San Diego sowie in der aktuellen Ausgabe des Fachmagazins „Physical Review Letters“. Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Roman Schnabel vom Institut für Laserphysik und Zentrum für Optische Quantentechnologien an dem Forschungsvorhaben beteiligt.

Die Forscherinnen und Forscher hatten im September 2015 erstmals die geheimnisvollen Wellen im All mithilfe der beiden vier Kilometer großen Detektoren des „Laser Interferometer Gravitational-Wave Observatory“ (LIGO) in Livingston und Hanford in den USA beobachten können.


Simulation der Kollision von zwei Schwarzen Löchern

LIGO

Die jetzt entdeckten Gravitationswellen entstanden bei der Kollision zweier Schwarzer Löcher, die vor rund 1,4 Milliarden Jahren stattfand. So lange hat die Gravitationswelle gebraucht, um zur Erde zu gelangen. Die Schwarzen Löcher, die sich zuvor lange umkreist hatten, bevor sie schließlich ineinander stürzten, hatten eine Masse von 8 bzw. 14 Sonnenmassen und bildeten ein neues Schwarzes Loch mit 21 Sonnenmassen. Eine Sonnenmasse entspricht 1,99 Quadrilliarden Tonnen oder 332.946 Erdmassen. In Schwarzen Löchern wirkt eine derart starke Schwerkraft (Gravitation), dass nicht einmal Lichtstrahlen entweichen können.

Albert Einstein hatte die Existenz von Gravitationswellen 1916 auf Basis seiner Allgemeinen Relativitätstheorie vorhergesagt, nach der die Gravitation keine Kraft (wie etwa noch bei Newton) ist, sondern eine Eigenschaft von Raum und Zeit: Gravitationswellen sind Verzerrungen in der Struktur der Raumzeit und breiten sich mit Lichtgeschwindigkeit aus. Sie geben Auskunft über ihre Entstehung und das Wesen der Gravitation. Ihre direkte Beobachtung ermöglicht deshalb eine neue Sicht auf das Universum, denn bisher basierten die Erkenntnisse über das Weltall auf Messungen von elektromagnetischen Wellen wie z. B. Licht oder Gammastrahlung.

Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Roman Schnabel seit Frühjahr 2015 Mitglied im Team des deutsch-britischen Gravitationswellendetektors GEO600 sowie in der LIGO Scientific Collaboration (LSC). Der Physiker ist seit 2013 Vorsitzender der LSC-Arbeitsgruppe „Quantenrauschen“ und arbeitet an der Universität Hamburg mit seinem Team an der Verbesserung der Messempfindlichkeit von Gravitationswellendetektoren. Prof. Schnabel entwickelte während seiner Tätigkeit an der Leibniz Universität Hannover die weltweit erste Quelle für Licht mit einem sogenannten „gequetschtem Quantenrauschen“, mit deren Hilfe die Präzision bei Messungen deutlich gesteigert werden kann.

Der Präsident der Universität Hamburg, Prof. Dr. Dieter Lenzen: „Wir freuen uns sehr, dass mit Professor Roman Schnabel ein Wissenschaftler unserer Universität mit seinem Team an diesen bahnbrechenden Entdeckungen beteiligt ist. Professor Schnabel trägt mit seiner Forschung dazu bei, dass die Wissenschaft künftig astrophysikalische Informationen noch besser auswerten kann und wir eine neue Dimension bei der Untersuchung des Universums erreichen werden.“

Die LIGO Scientific Collaboration (LSC) ist eine Gruppe von mehr als 1000 Forschenden von Universitäten in den USA und in 14 weiteren Ländern. Die Virgo Collaboration besteht aus mehr als 250 Physikerinnen und Physikern sowie Ingenieurinnen und Ingenieuren aus 19 verschiedenen europäischen Forschungsgruppen. Mehr als 90 Universitäten und Forschungseinrichtungen in der LSC entwickeln Detektortechnologien und analysieren die Daten. Das Detektornetzwerk der LSC umfasst die LIGO-Interferometer und den GEO600-Detektor.

Für Rückfragen:

Prof. Dr. Roman Schnabel
Universität Hamburg
Institut für Laserphysik und Zentrum für Optische Quantentechnologien
Tel.: +49 40 8998-5102
E-Mail: roman.schnabel@physnet.uni-hamburg.de

Birgit Kruse |

Weitere Berichte zu: Gravitation Gravitationswellen Quantenrauschen Sonnenmassen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht TU Graz-Forschende entwickeln neuen 3D-Druck zur direkten Fertigung von Nanostrukturen
13.11.2019 | Technische Universität Graz

nachricht Faserverstärkte Verbundstoffe schnell und präzise durchleuchten
13.11.2019 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mehr digitale Prozesse für den Mittelstand

13.11.2019 | Unternehmensmeldung

dormakaba mit 4 Architects' Darling in Gold ausgezeichnet

13.11.2019 | Förderungen Preise

Effiziente Motorenproduktion mit der neuesten Generation des LZH IBK

13.11.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics