Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signal aus der Vergangenheit des Universums: Zweites Gravitationswellensignal beobachtet

16.06.2016

Wissenschaftlerinnen und Wissenschaftler der LIGO-Virgo-Collaboration (LVC) haben vor kurzem ein weiteres Gravitationswellensignal beobachtet, das nach der Kollision zweier Schwarzer Löcher entstanden ist. Das berichten sie am heutigen Mittwoch, dem 15. Juni 2016, auf der Konferenz der American Astronomical Society (AAS) in San Diego sowie in der aktuellen Ausgabe des Fachmagazins „Physical Review Letters“. Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Roman Schnabel vom Institut für Laserphysik und Zentrum für Optische Quantentechnologien an dem Forschungsvorhaben beteiligt.

Die Forscherinnen und Forscher hatten im September 2015 erstmals die geheimnisvollen Wellen im All mithilfe der beiden vier Kilometer großen Detektoren des „Laser Interferometer Gravitational-Wave Observatory“ (LIGO) in Livingston und Hanford in den USA beobachten können.


Simulation der Kollision von zwei Schwarzen Löchern

LIGO

Die jetzt entdeckten Gravitationswellen entstanden bei der Kollision zweier Schwarzer Löcher, die vor rund 1,4 Milliarden Jahren stattfand. So lange hat die Gravitationswelle gebraucht, um zur Erde zu gelangen. Die Schwarzen Löcher, die sich zuvor lange umkreist hatten, bevor sie schließlich ineinander stürzten, hatten eine Masse von 8 bzw. 14 Sonnenmassen und bildeten ein neues Schwarzes Loch mit 21 Sonnenmassen. Eine Sonnenmasse entspricht 1,99 Quadrilliarden Tonnen oder 332.946 Erdmassen. In Schwarzen Löchern wirkt eine derart starke Schwerkraft (Gravitation), dass nicht einmal Lichtstrahlen entweichen können.

Albert Einstein hatte die Existenz von Gravitationswellen 1916 auf Basis seiner Allgemeinen Relativitätstheorie vorhergesagt, nach der die Gravitation keine Kraft (wie etwa noch bei Newton) ist, sondern eine Eigenschaft von Raum und Zeit: Gravitationswellen sind Verzerrungen in der Struktur der Raumzeit und breiten sich mit Lichtgeschwindigkeit aus. Sie geben Auskunft über ihre Entstehung und das Wesen der Gravitation. Ihre direkte Beobachtung ermöglicht deshalb eine neue Sicht auf das Universum, denn bisher basierten die Erkenntnisse über das Weltall auf Messungen von elektromagnetischen Wellen wie z. B. Licht oder Gammastrahlung.

Die Universität Hamburg ist mit der Arbeitsgruppe von Prof. Roman Schnabel seit Frühjahr 2015 Mitglied im Team des deutsch-britischen Gravitationswellendetektors GEO600 sowie in der LIGO Scientific Collaboration (LSC). Der Physiker ist seit 2013 Vorsitzender der LSC-Arbeitsgruppe „Quantenrauschen“ und arbeitet an der Universität Hamburg mit seinem Team an der Verbesserung der Messempfindlichkeit von Gravitationswellendetektoren. Prof. Schnabel entwickelte während seiner Tätigkeit an der Leibniz Universität Hannover die weltweit erste Quelle für Licht mit einem sogenannten „gequetschtem Quantenrauschen“, mit deren Hilfe die Präzision bei Messungen deutlich gesteigert werden kann.

Der Präsident der Universität Hamburg, Prof. Dr. Dieter Lenzen: „Wir freuen uns sehr, dass mit Professor Roman Schnabel ein Wissenschaftler unserer Universität mit seinem Team an diesen bahnbrechenden Entdeckungen beteiligt ist. Professor Schnabel trägt mit seiner Forschung dazu bei, dass die Wissenschaft künftig astrophysikalische Informationen noch besser auswerten kann und wir eine neue Dimension bei der Untersuchung des Universums erreichen werden.“

Die LIGO Scientific Collaboration (LSC) ist eine Gruppe von mehr als 1000 Forschenden von Universitäten in den USA und in 14 weiteren Ländern. Die Virgo Collaboration besteht aus mehr als 250 Physikerinnen und Physikern sowie Ingenieurinnen und Ingenieuren aus 19 verschiedenen europäischen Forschungsgruppen. Mehr als 90 Universitäten und Forschungseinrichtungen in der LSC entwickeln Detektortechnologien und analysieren die Daten. Das Detektornetzwerk der LSC umfasst die LIGO-Interferometer und den GEO600-Detektor.

Für Rückfragen:

Prof. Dr. Roman Schnabel
Universität Hamburg
Institut für Laserphysik und Zentrum für Optische Quantentechnologien
Tel.: +49 40 8998-5102
E-Mail: roman.schnabel@physnet.uni-hamburg.de

Birgit Kruse |

Weitere Berichte zu: Gravitation Gravitationswellen Quantenrauschen Sonnenmassen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics