Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstveränderliche Materialien eröffnen neue Wege zu hochentwickelten optischen Technologien

14.01.2016

Deutsch-amerikanischem Physikerteam gelingt es, den Phasenübergang von Vanadiumdioxid so zu regulieren, dass die Übergangstemperaturen präzise eingestellt werden können

Im einen Moment siehst du etwas, doch im nächsten ist es plötzlich verschwunden: In Büchern und Filmen gelingt es Zauberern mühelos, einen undurchsichtigen Körper in einen transparenten zu verwandeln.


Durch selektive Ionenbeststrahlung wird die Übergangstemperatur von Vanadiumoxid in den Regionen gezielt verändert, die dem Ionenstrahl ausgesetzt sind.

Abb.: Jura Rensberg


Der Physiker Jura Rensberg von der Universität Jena, hier an einem Teilchenbeschleuniger, gehört zu dem internationalen Forschungsteam, das den Phasenübergang von Vanadiumdioxid weiterentwickelt hat.

Foto: Jan-Peter Kasper/FSU

Doch auch in der Realität gibt es Materialien, die dieses Kunststück vollbringen können: Man nennt diese Eigenschaft Phasenübergang. Das bedeutet, dass das Material abhängig von seiner Temperatur oder einem äußeren elektrischen Feld von einem transparenten in einen trüben Zustand wechseln kann.

Jüngst ist es einem internationalen Team von Wissenschaftlerinnen und Wissenschaftlern verschiedener Forschungseinrichtungen – unter Beteiligung der Friedrich-Schiller-Universität Jena – gelungen, den Phasenübergang von Vanadiumdioxid so zu regulieren, dass sie die Übergangstemperaturen präzise selbst einstellen können.

Die Forschungsarbeit, die heute in der Fachzeitschrift „Nano Letters“ veröffentlicht wurde, könnte zu neuen Arten von veränderbaren Materialien für die Optik und die Wärmeregulierung führen.

„Im Grunde wäre jedes optische Element besser, wenn es veränderlich wäre“, erklärt Mikhail Kats, Assistenzprofessor für Elektrotechnik und Technische Informatik an der University of Wisconsin-Madison (USA) und Seniorautor des Artikels.

Anstatt sich auf mechanische Komponenten zu verlassen, um ein Objekt zu fokussieren, wie die Linse einer Kamera oder eines Teleskopokulars, würde ein veränderliches Material seine wesentlichen optischen Eigenschaften auf Abruf verändern und anpassen.

Die Wissenschaft weiß seit über 50 Jahren, dass Materialien wie Vanadiumdioxid zwischen transparentem und trübem Zustand wechseln können. Normalerweise wechseln diese Materialien ihren Zustand jedoch nur unter ganz bestimmten Bedingungen, was den praktischen Einsatz erheblich einschränkt.

„Bei den meisten dieser Materialien erfolgt die Umwandlung unter Bedingungen, die weit von der normalen Raumtemperatur entfernt sind. Somit ist es schwierig, sie in nützliche Geräte einzubauen“, erklärt Kats.

Die Wissenschaftler veränderten die Übergangstemperatur von Vanadiumdioxid nun nicht nur von 68 °C auf unter Raumtemperatur, sondern können diese eben auch auf jeden beliebigen Wert einstellen. „Diese Ergebnisse eröffnen neue Möglichkeiten für photonische Geräte und Apparate“, sagt Shriram Ramanathan, Professor für Werkstofftechnik an der Purdue University in West Lafayette (USA), der ebenfalls an der Studie mitgearbeitet hat.

Einsatz in „intelligenten“ Wänden denkbar

Weil die optischen und strukturellen Eigenschaften auf denselben physikalischen Prinzipien beruhen, ändern sich auch die thermische und elektrische Leitfähigkeit des Vanadiumdioxids aufgrund des Phasenübergangs. Diese Art von Materialien könnte zum Beispiel in Wohnhäusern in „intelligenten“ Wänden oder Fenstern verbaut werden, die dann auf die jeweilige Umgebungstemperatur reagieren.

„Objekte, die so konzipiert sind, dass sie Licht bei hohen Temperaturen effizient emittieren, nicht aber bei niedrigen Temperaturen, könnten als rein passive Temperaturregler eingesetzt werden, die keinerlei externe Schaltung oder Energiequelle benötigen“, so Kats.

Bisher hatten Wissenschaftlerinnen und Wissenschaftler, die die Umwandlungstemperatur von Vanadiumdioxid zu verändern versuchten, im Laufe des Prozesses stets Verunreinigungen eingebracht. Dies veränderte jedoch das gesamte Material einheitlich – das deutsch-amerikanische Team hingegen beschoss nur bestimmte Regionen des Vanadiumdioxids mit energiereichen Ionen.

Ein solcher Ionenbeschuss verursacht Schäden am Material, was normalerweise eine unbeabsichtigte Begleiterscheinung ist. Aber der mitwirkende Festkörperphysiker Prof. Dr. Carsten Ronning von der Friedrich-Schiller-Universität Jena erklärt, dass die aktuelle Entwicklung der Wissenschaftler gerade auf diesen Schäden aufbaut.

„Das Großartige unseres Ansatzes ist, dass wir uns diese ‚ungewollten‘ Schäden zunutze machen“, sagt er. Die Ausrichtung des Ionenstrahls auf bestimmte Regionen der Proben ermöglichte es dem Wissenschaftlerteam, Veränderungen des Materials im Nanometerbereich hervorzurufen.

„Wir können die Umwandlungstemperatur überall auf der Probe mit einer Genauigkeit von etwa 20 Nanometern präzise steuern“, so Ronning. „Mit dieser Methode konnten wir hocheffiziente optische Metaoberflächen schaffen, die mehrere Phasenumwandlungen gleichzeitig durchlaufen.“ Die Wissenschaftlerinnen und Wissenschaftler konnten so beispielsweise einen neuen optischen Polarisator entwickeln und bauen, dessen Selektivität sich je nach Temperatur verändert.

An dem Forschungsprojekt waren Wissenschaftlerinnen und Wissenschaftler aus der ganzen Welt beteiligt. Die Erstautoren des Manuskripts, Jura Rensberg von der Friedrich-Schiller-Universität Jena und Shuyan Zhang von der Harvard Universität, promovieren bei Professor Carsten Ronning bzw. Professor Federico Capasso.

Original-Publikation:
Nano Letters (2016), Artikel ASAP, DOI: 10.1021/acs.nanolett.5b04122
http://pubs.acs.org/toc/nalefd/0/0

Kontakt (in Jena):
Prof. Dr. Carsten Ronning
Institut für Festkörperphysik der Universität Jena
Helmholtzweg 3
07743 Jena
Tel.: 03641 / 947300
E-Mail: carsten.ronning[at]uni-jena.de

www.nano.uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Axel Burchardt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics