Schwereloser Staub: Forscher entdecken überraschende Entmischung geladener Mikropartikel

Bild 1: Carsten Killer verfolgt die Entmischung der Mikropartikel am Bildschirm während einer Parabel und kontrolliert den Verlauf des Experiments. Copyright: Tim Bockwoldt

Aus der Alltagserfahrung wissen wir, dass sich Wasser und Öl nicht vermischen. In ähnlicher Weise tendieren Systeme aus zwei Sorten geladener Partikel dann zur Entmischung, wenn der Ladungsunterschied zwischen beiden Sorten eine bestimmte Größe überschreitet. Die Wissenschaftler wollten die Frage klären, wie solche Entmischungsvorgänge auf mikroskopischer Ebene ablaufen.

Carsten Killer, Dr. Michael Himpel und Professor André Melzer aus dem Institut für Physik der Universität Greifswald (http://www.physik.uni-greifswald.de/) haben zusammen mit Dr. Tim Bockwoldt, Stefan Schütt und Professor Alexander Piel von der Universität Kiel (Institut für Experimentelle und Angewandte Physik, http://www.ieap.uni-kiel.de/) Experimente auf sogenannten Parabelflügen durchgeführt, bei denen „binäre“ Mischungen aus zwei unterschiedlich großen Partikelsorten untersucht werden. Während der Schwerelosigkeitsphase werden diese „Staubteilchen“ in eine Plasmaumgebung eingebracht, wo sie eine dichte Wolke bilden.

Im Plasma erhalten die beiden Partikelsorten entsprechend ihres Größenunterschieds eine leicht unterschiedliche elektrische Ladung. Bereits Ladungsdifferenzen von weniger als drei Prozent führten zu einer unerwarteten räumlichen Trennung der beiden Sorten innerhalb der Wolke – etwa wie bei Wasser und Öl.

Das Besondere an diesem Experiment ist eine neuartige Methode, die es ermöglicht, den Entmischungsprozess auf der Ebene einzelner Partikel zu beobachten. Da die Mikropartikel mit herkömmlichen Messtechniken nicht zu unterscheiden sind, markierten die Forscher eine Sorte mit Fluoreszenzfarbstoffen, die sich unter Laserbeleuchtung von der unmarkierten Partikelsorte optisch abheben.

Während unter normalen Schwerkraftbedingungen eine Entmischung der zwei Staubsorten aufgrund der unterschiedlichen Gravitationskräfte zu erwarten ist, war die Beobachtung der Trennung unter Schwerelosigkeit überraschend, sagt Carsten Killer: „Wir haben herausgefunden, dass die durch das Plasma hervorgerufenen, elektrostatischen Kräfte für die Entmischung verantwortlich sind.“

Die Entmischung von geladenen Partikeln ist zum Beispiel bei der Herstellung von Metalllegierungen und auch in der Biologie (Mikrofluidik*) relevant, wo mikroskopische Objekte wie Zellen oder Viren für diagnostische Zwecke ver- oder entmischt werden können. „Die hier untersuchten partikelhaltigen Plasmen bilden ein hervorragendes Modellsystem, um die Dynamik geladener Partikel auf mikroskopischer Ebene zu untersuchen. Das könnte industrielle und biotechnologische Prozesse zukünftig ver-bessern“, ordnet Tim Bockwoldt die Forschungsergebnisse ein.

Um den Einfluss des Plasmas ohne störende Schwerkraft zu untersuchen, wurden die Experimente auf Parabelflügen durchgeführt. Dabei vollführt ein Flugzeug ein spezielles Manöver, bei dem die Staubpartikel im Plasma wie auch die Wissenschaftler an Bord für 22 Sekunden schwerelos sind. Hierfür wurde der neue Airbus A310 „Zero-G“ genutzt, der zuvor als Kanzlermaschine „Konrad Adenauer“ im Einsatz war und vollständig umgebaut wurde. Das Team aus Greifswald und Kiel nimmt bereits seit mehr als zehn Jahren regelmäßig an Parabelflügen teil. Trotzdem war dieser Flug eine erneute Premiere, da das Experiment für die geänderten Anforderungen des neuen Flugzeugs völlig neu aufgebaut werden musste.

Die Untersuchungen in Greifswald und Kiel werden seit mehr als zehn Jahren vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) gefördert. Das aktuelle Projekt „Kolloidale Plasmen unter Schwerelosigkeit: Technologietransfer von Kiel nach Greifswald“ (Förderkennzeichen 50WM1538 und 50WM1539) läuft 18 Monate und hat ein Volumen für Personal und Sachkosten von 200.000 Euro.

Weitere Informationen

Originalpublikation:
Phase separation of binary charged particle systems with small size disparities using a dusty plasma Phys. Rev. Lett.
(http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.115002)
Carsten Killer, Tim Bockwoldt, Stefan Schütt, Michael Himpel, André Melzer, and Alexander Piel

* Mikrofluidik (http://de.wikipedia.org/wiki/Mikrofluidik)

Bild 1
Carsten Killer verfolgt die Entmischung der Mikropartikel am Bildschirm während einer Parabel und kontrolliert den Verlauf des Experiments.
Copyright: Tim Bockwoldt

Bild 2
Carsten Killer, Tim Bockwoldt und Stefan Schütt (v. l.) verfolgen die Messungen während einer Parabel auf den Bildschirmen und kontrollieren, ob das Experiment wie geplant verläuft.
Copyright:Tim Bockwoldt

Bild 3
Tim Bockwoldt, André Melzer (hinten v. l.), Carsten Killer und Stefan Schütt (vorne v. l.) während einer Parabel.
Copyright: Tim Bockwoldt

Bild 4
Tim Bockwoldt (vorne) und Michael Himpel kalibrieren vor dem Flug die Elektrodenspannung, die ein wichtiger Faktor für die Plasmaeigenschaften ist. Das Plasma wird in der Metallkammer (Bildmitte) erzeugt.
Copyright: Carsten Killer

Bild 5
Ergebnis der Auswertungen. Zum ersten Zeitpunkt (oben) sind die fluoreszierenden Partikel (rote Kreuze) über die gesamte Staubwolke (blaue Kreise) verteilt. Zum zweiten Zeitpunkt (unten) befinden sich die fluoreszierenden Partikel ausschließlich am äußeren Rand der Staubwolke.
Copyright: Carsten Killer

Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen.
Download: http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/medienfotos-2016/medienfotos-maerz-2016.html

Ansprechpartner an der Universität Greifswald

Prof. Dr. André Melzer
Institut für Physik
Telefon 03834 86-4790
melzer@physik.uni-greifswald.de

Carsten Killer
Institut für Physik
Telefon 03834 86-4794
killer@physik.uni-greifswald.de

Ansprechpartner an der Universität Kiel

Professor Dr. Alexander Piel
Institut für Angewandte und Experimentelle Physik
Telefon 0431 880-3835
piel@physik.uni-kiel.de

Dr. Tim Bockwoldt
Institut für Angewandte und Experimentelle Physik
Telefon 0431 880-3837
bockwoldt@physik.uni-kiel.de

Media Contact

Jan Meßerschmidt idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer