Schrödingers Katze mit 20 Qubits

Skizze des Experiments: Rubidiumatome werden mithilfe von Laserstrahlen eingefangen. Ein weiterer zusätzlicher Laser regt die Atome an, bis etwa die Hälfte von ihnen den Rydberg-Zustand erreicht. Forschungszentrum Jülich / Tobias Schlößer

Der Physiker Erwin Schrödinger hatte 1935 das Gedankenexperiment mit der Quantenkatze aufgebracht, in dem die Katze zusammen mit einem radioaktivem Präparat, einem Detektor und einer tödlichen Menge Gift in einer Kiste eingeschlossen ist.

Sollte der radioaktive Stoff zerfallen, schlägt der Detektor Alarm und das Gift wird freigesetzt. Das Besondere daran: Nach den Regeln der Quantenmechanik ist anders als im Alltag nicht klar, ob die Katze tot ist oder lebendig. Sie wäre beides gleichzeitig, und zwar so lange, bis ein Experimentator nachschaut. Denn erst dann stellte sich ein eindeutiges Ergebnis ein.

Bereits seit Beginn der 1980er Jahre sind Forscher in der Lage, diese Überlagerung von Quantenzuständen mittels verschiedener Ansätze experimentell im Labor zu realisieren. „Diese Überlagerungszustände sind allerdings extrem empfindlich. Schon kleinste thermische Wechselwirkungen mit der Umgebung lassen sie kollabieren“, erklärt Tommaso Calarco vom Forschungszentrum Jülich.

Er spielt unter anderem eine führende Rolle in Europas großer Quanteninitiative, dem Quanten-Flaggschiffprogramm der EU. „Aus diesem Grund kann man bis jetzt auch nur deutlich weniger Quantenbits im Zustand von Schrödingers Katze realisieren als solche, die unabhängig voneinander existieren.“

Von Letzteren können Forscher mittlerweile mehr als 50 in Laborexperimenten kontrollieren. Doch diese Quantenbits, oder kurz: Qubits, weisen nicht die besonderen Merkmale von Schrödingers Katze auf; anders dagegen die 20 Qubits, die das Forscherteam nun mithilfe eines sogenannten programmierbaren Quantensimulators erzeugt haben: ein Rekordwert, der selbst dann noch gilt, wenn man andere physikalische Ansätze mit optischen Photonen, Ionenfallen oder supraleitenden Schaltkreisen berücksichtigt.

Für die Entwicklung des Experiments hatten sich Forscher von mehreren der renommiertesten Einrichtungen der Welt zusammengeschlossen. Neben den Jülicher Forschern waren Wissenschaftler zahlreicher amerikanischer Spitzenuniversitäten – Harvard, Berkeley, MIT und Caltech – sowie der italienischen Universität Padua beteiligt.

„Qubits im Katzenzustand gelten für die Entwicklung von Quantentechnologien als das höchste Gut“, erklärt Jian Cui. „Denn in der Überlagerung steckt das Geheimnis der ungeheuren Leistungsfähigkeit, die man sich von zukünftigen Quantencomputern verspricht,“ so der Physiker vom Jülicher Peter Grünberg Institut (PGI-8).

Klassische Bits in einem herkömmlichen Rechner haben immer nur einen bestimmten Wert, der sich beispielsweise aus 0 und 1 zusammensetzt. Sie lassen sich daher nur Bit für Bit nacheinander prozessieren. Qubits, die aufgrund des Überlagerungsprinzips mehrere Zustände gleichzeitig annehmen, können dagegen mehrere Werte parallel in einem Schritt speichern und verarbeiten. Ganz entscheidend ist dabei die Anzahl der Qubits. Mit einer Handvoll kommt man noch nicht weit.

Aber bei 20 Qubits liegt die Zahl der sich überlagernden Zustände bereits bei über einer Million. Und 300 Qubits können mehr Zahlen gleichzeitig speichern, als es Teilchen im Universum gibt.

Die neue Bestmarke von 20 Qubits kommt diesem Wert nun ein Stückchen näher, nachdem der alte Rekord von 14 Qubits seit 2011 unverändert bestand. Für ihr Experiment nutzten die Forscher einen programmierbaren Quantensimulator mit Atomen, die sich im Rydberg-Zustand befinden. Bei diesem Verfahren werden einzelne Atome, in diesem Fall Rubidiumatome, mithilfe von Laserstrahlen eingefangen und nebeneinander in einer Reihe auf ihrem Platz gehalten. Die Technik ist als „optische Pinzette“ bekannt. Ein weiterer zusätzlicher Laser regt die Atome an, bis etwa die Hälfte von ihnen den sogenannten Rydberg-Zustand erreicht, bei dem sich die Elektronen weit jenseits des Kerns befinden.

Dieser Prozess ist recht kompliziert und nimmt klassischerweise so viel Zeit in Anspruch, dass der empfindliche Katzenzustand in der Zwischenzeit schon wieder zerfällt. Die Forscher des Jülicher Peter Grünberg Instituts (PGI-8) konnten diese Vorbereitungszeit minimieren, indem sie die Art und Weise veränderten, wie der zweite Laser an- und ausgeschaltet wird – und ermöglichten so den neuen Rekord.

„Wir blähen die Atome praktisch soweit auf, bis ihre Atomhüllen mit den benachbarten Atomen verschmelzen und simultan zwei entgegengesetzte Konfigurationen einnehmen“, erklärt Jian Cui. „Das geht soweit, dass sich die Wellenfunktionen wie bei Schrödingers Katze überlagern und wir einen Zustand nachweisen konnten, der auch als Greenberger–Horne–Zeilinger-Zustand bezeichnet wird.“

Komplettiert wurde der Erfolg für die Quantenforschung durch eine weitere Arbeit einer chinesischen Forschungsgruppe, die ebenfalls in der aktuellen Ausgabe von „Science“ erschienen ist. Den Forschern ist es gelungen, mithilfe von supraleitenden Schaltkreisen 18 Qubits im Greenberger–Horne–Zeilinger-Zustand zu realisieren, was für diesen experimentellen Ansatz ebenfalls einen neuen Rekord darstellt.

Pressekontakt:

Dr. Regine Panknin, Pressereferentin
Forschungszentrum Jülich
Tel. +49 2461 61-9054
E-Mail: r.panknin@fz-juelich.de

Tobias Schlößer, Pressereferent
Forschungszentrum Jülich
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Prof. Dr. Tommaso Calarco
Leiter des Peter Grünberg Instituts, Bereich Quantum Control (PGI-8)
Tel.: +49 2461 61-9365
E-Mail: t.calarco@fz-juelich.de

Dr. Jian Cui
Peter Grünberg Institute – Quantum Control (PGI-8)
Tel.: +49 2461 61-85391
E-Mail: c.jian@fz-juelich.de

Phila Rembold
Peter Grünberg Institute – Quantum Control (PGI-8)
Tel.: +49 2461 61-96928
E-Mail: p.rembold@fz-juelich.de

Generation and manipulation of Schrödinger cat states in Rydberg atom arrays
A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin
Science, 09 Aug 2019, DOI: 10.1126/science.aax9743

Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits
By Chao Song, Kai Xu, Hekang Li, Yu-Ran Zhang, Xu Zhang, Wuxin Liu, Qiujiang Guo, Zhen Wang, Wenhui Ren, Jie Hao, Hui Feng, Heng Fan, Dongning Zheng, Da-Wei Wang, H. Wang, Shi-Yao Zhu
Science, 09 Aug 2019, DOI: 10.1126/science.aay0600

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2019/2019-08-13-sc… – Pressemitteilung des Forschungszentrums Jülich

Media Contact

Dipl.-Biologin Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer