Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die schnellste Stoppuhr der Welt – bald am CERN?

12.11.2012
An der TU Wien wurde eine Methode vorgeschlagen, millionenfach kürzere Lichtblitze zu vermessen als bisher – und zwar mit Geräten, die schon in wenigen Jahren am CERN aufgebaut werden sollen.

Bei der Kollision schwerer Atomkerne am CERN sollten sich die kürzesten Lichtblitze der Welt erzeugen lassen, das konnte ein Forschungsteam der TU Wien in Computersimulationen zeigen. Doch was nützen die kürzesten Lichtpulse, wenn sie zu schnell vorüber sind, um von heutigen Geräten überhaupt vermessen werden zu können?


Zwei Blei-Atome kollidieren. Dabei entsteht ein Quark-Gluon-Plasma, das ultrakurze Lichtpulse aussenden kann. F. Aigner / TU Wien

Nun wurde im Journal „Physical Review Letters“ eine Methode präsentiert, für die ultrakurzen Lichtpulse die genaueste Stoppuhr der Welt herzustellen – mit Hilfe eines Detektors, der im Jahr 2018 in die Anlage des LHC-Beschleunigers am CERN eingebaut werden soll.

Klein, kurz und heiß

Ultrakurze Lichtpulse werden verwendet, um physikalische Vorgänge zu untersuchen, die auf extrem kurzen Zeitskalen ablaufen. Mit speziellen Lasern sind heute Pulse in der Größenordnung von Attosekunden möglich – Milliardstel einer Milliardstelsekunde (10 hoch -18 Sekunden). „Bei Kern-Kollisionen in Teilchenbeschleunigern wie dem LHC am CERN oder am RHIC in den USA können aber Lichtpulse erzeugt werden, die noch einmal millionenfach kürzer sind“, sagt Andreas Ipp vom Institut für Theoretische Physik der TU Wien.

Beim Experiment ALICE am CERN werden Blei-Atomkerne fast auf Lichtgeschwindigkeit beschleunigt und dann zur Kollision gebracht. Aus Bestandteilen der Atomkerne und vielen weiteren Teilchen, die durch die Wucht des Aufpralls direkt beim Zusammenstoß erzeugt werden, entsteht ein Quark-Gluon-Plasma – ein Materiezustand, der so heiß ist, dass selbst Protonen und Neutronen aufgeschmolzen werden. Die elementaren Bestandteile der Materie – Quarks und Gluonen – bewegen sich wirr durcheinander. Dieses Quark-Gluon-Plasma existiert nur für die unvorstellbar kurze Zeitspanne von einigen Yoktosekunden (10 hoch -24 Sekunden).

Ideen aus der Astronomie

Im Quark-Gluon-Plasma nach einer Teilchenkollision können auch Lichtblitze entstehen, in denen wertvolle Information über das Plasma steckt. Doch herkömmliche Messmethoden sind viel zu langsam, um die Blitze auf der Yoktosekunden-Zeitskala aufzulösen. „Wir greifen daher auf den Hanbury Brown-Twiss-Effekt zurück, der ursprünglich für astronomische Messungen entwickelt wurde“, erklärt Andreas Ipp.

Bei Hanbury Brown-Twiss-Experimenten werden die Daten von zwei verschiedenen Licht-Detektoren miteinander verknüpft, daraus lässt sich beispielsweise der Durchmesser eines Sterns genau berechnen. „Anstatt räumliche Abstände zu studieren kann man diesen Effekt aber ebenso nutzen, um zeitliche Abstände zu vermessen“, sagt Peter Somkuti, Dissertant an der TU Wien, der einen großen Teil der Computersimulationen durchführte. Wie die Berechnungen nun zeigen, könnten die Yoktosekunden-Pulse durch ein Hanbury Brown-Twiss-Experiment aufgelöst werden. „Das wäre experimentell zwar recht aufwändig, aber es ist machbar“, sagt Ipp. Dafür würde man gar keine teuren zusätzlichen Detektoren benötigen: Die Messungen können mit dem „Forward Calorimeter“ durchgeführt werden, das 2018 am CERN in Betrieb gehen soll. Damit würde das ALICE-Experiment zur höchstauflösenden Stoppuhr der Welt werden.

Viele offene Fragen

Die Physik des Quark-Gluon-Plasmas ist nach wie vor voller ungelöster Rätsel: Es hat eine extrem niedrige Viskosität – ist also dünnflüssiger als alle Flüssigkeiten, die wir kennen. Außerdem strebt es extrem schnell in ein thermisches Gleichgewicht, auch wenn es anfangs in einem Zustand extremen Ungleichgewichts war. Die Vermessung der Lichtpulse aus dem Quark-Gluon-Plasma könnte wichtige neue Daten liefern, um diesen Materiezustand besser zu verstehen.

In Zukunft könnten die Lichtblitze vielleicht sogar verwendet werden, um Fragestellungen aus der Kernphysik zu untersuchen. „Experimente mit zwei Lichtpulsen hintereinander sind in der Quantenphysik sehr verbreitet“, sagt Andreas Ipp. „Der erste Lichtblitz ändert den Zustand des untersuchten Objektes, der zweite wird kurz darauf verwendet, um diese Veränderung zu messen.“ Mit Yoktosekunden-Lichtpulsen könnte man diese wohlerprobte Technik in Bereichen einsetzen, die der Forschung bisher noch völlig unzugänglich waren.

Rückfragehinweis:
Dr. Andreas Ipp
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstr. 8-10, 1040 Wien
T: +43 1 58801 13635
ipp@hep.itp.tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://prl.aps.org/abstract/PRL/v109/i19/e192301

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher untersuchten Wechselwirkungen in künstlichen Systemen
24.09.2018 | Universität Leipzig

nachricht Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht
21.09.2018 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics