Wie schnell entsteht der elektrische Widerstand?

Elektronen (blau) und Löcher (rot) vor dem Anlegen eines elektrischen Feldes...<br>

Als Sie das erste Mal von elektrischem Strom hörten, haben Sie sich vielleicht gefragt, wie sich die Elektronen in einem Festkörper vom negativen zum positiven Anschluss bewegen. Es ist im Prinzip möglich, dass die Elektronen durch den Festkörper „fliegen“, ohne dass sie durch die Atome oder andere Ladungen im Material beeinflusst werden. Unter normalen Bedingungen geschieht dies nicht, da die Elektronen mit den schwingenden Atomkernen oder mit Störstellen zusammenstoßen. Typisch passieren solche Stöße nach einer extrem kurzen Zeit, ca. 100 Femtosekunden (10 hoch -13 Sekunden, ein Zehntel einer billionstel Sekunde). Damit ist die Elektronenbewegung im Material wie eine Bewegung durch eine dichte Menschenmenge, nicht wie ein Lauf eine leere Strasse entlang. Deshalb ist eine typische Elektronengeschwindigkeit nur 1 m/h (nicht km/h!), langsamer als eine Schnecke.

Obwohl die Elektronen im Material sehr häufig anstoßen, benötigen solche Stöße eine endliche Zeit. Wenn man sich durch eine Menschenmenge drängelt, gibt es dort manchmal kleine leere Bereiche, in denen man schneller gehen kann. Wenn man die Elektronen bei ihrer Bewegung auf einer sehr schnellen (Femtosekunden) Zeitskala beobachtet, würde man erwarten, dass die Elektronen nach dem Einschalten der Batterie für sehr kurze Zeit ungestört durch das Material fliegen, bevor sie an irgendwas anstoßen. Das ist genau, was Forscher am Max-Born-Institut in Berlin kürzlich getan haben und worüber sie in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters [Band 107, 256602 (2011)] berichten. Extrem kurze Pulse von Terahertz Licht (1 Terahertz = 10 hoch 12 Hz, 1 Billion Schwingungen pro Sekunde) wurden anstelle einer Batterie benutzt (Licht hat wie eine Batterie ein elektrisches Feld), um optisch erzeugte freie Elektronen in einem Stück Galliumarsenid zu beschleunigen.

Die so beschleunigten Elektronen erzeugen ihrerseits ein weiteres elektrisches Feld. Wenn man dieses Feld mit Femtosekunden-Zeitauflösung misst, kann man daraus genau erkennen, was die Elektronen tun. Die Forscher sahen, dass die Elektronen direkt nach dem Einschalten des elektrischen Feldes ungestört beschleunigt wurden, wohingegen sich der Einfluss der Stöße erst nach etwa 300 Femtosekunden bemerkbar machte.

In dem beigefügten Film zeigen wir, was in dem Galliumarsenidkristall passiert. Elektronen (blaue Kugeln) und Löcher (rote Kugeln) zeigen zufällige Wärmebewegungen, bevor der Terahertz-Puls die Probe trifft. Das elektrische Feld (grüner Pfeil) beschleunigt Elektronen und Löcher in entgegengesetzte Richtungen. Im Entstehen des elektrischen Widerstands wird diese Bewegung abgebremst. Dies führt zu einem aufgeheizten Elektron-Loch-Gas, das heißt zu einer schnelleren Wärmebewegung.

Diese Experimente ermöglichten es den Forschern festzustellen, welche Art Stöße hauptsächlich für den elektrischen Widerstand verantwortlich ist. Interessanterweise fanden sie heraus, dass die wichtigsten Stoßpartner nicht atomare Schwingungen sind, sondern positiv geladene Teilchen, sogenannte Löcher. Ein Loch oder Defektelektron ist ein leerer Elektronenzustand im Valenzband des Halbleiters; es hat eine positive Ladung und eine etwa 6-mal so große Masse wie das Elektron. Die optische Anregung eines Halbleiters erzeugt gleichzeitig freie Elektronen und Löcher. Diese werden durch den Terahertz Puls, unsere Batterie, in entgegengesetzte Richtungen bewegt. Da die Löcher verglichen mit den Elektronen eine viel größere Masse haben, bewegen sie sich nur langsam, aber sie stehen den Elektronen im Weg, wodurch diese abgebremst werden.

Das so gewonnene Verständnis der Prozesse, die zu einer Abbremsung von Elektronen führen, kann zukünftig zu effizienterer und schnellerer Elektronik führen und vielleicht zu neuen Tricks, den elektrischen Widerstand zu verringern.

DOI: 10.1103/PhysRevLett.107.256602

Videoanimation:
http://www.fv-berlin.de/news/animation-wanderung-von-elektronen-und-loechern-im-elektrischen-feld/view
Kontakte:
Michael Woerner, Tel: 030-6392 1470, email: woerner@mbi-berlin.de
Klaus Reimann, Tel: 030-6392 1476, email: reimann@mbi-berlin.de
Thomas Elsaesser, Tel.: 030-6392 1400, email: elsasser@mbi-berlin.de

Media Contact

Christine Vollgraf Forschungsverbund Berlin e.V.

Weitere Informationen:

http://www.mbi-berlin.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer