Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlichterspruch aus dem Laserlabor

25.09.2012
Neue Methode gibt Antworten auf jahrzehntelangen Streit über elektrische Isolatoren

Seit den 1960er Jahren streiten sich Fachleute darüber, warum bestimmte elektrische Isolatoren überhaupt isolieren. Unterschiedliche Mechanismen sind der Fachwelt bekannt, und ein darauf basierendes Klassifikationssystem für isolierende Materialien existiert ebenfalls. Jedoch nur in der Theorie.


Lasersystem zur Erzeugung der ultrakurzen Röntgenpulse, mit denen die Filmaufnahmen im Experiment gemacht werden. Copyright: CAU, Foto: Rohwer et al.

Denn die experimentell gestützte, eindeutige Zuordnung von Materialien zu den verschiedenen Klassen war bislang bei vielen Materialien nicht möglich. Ein Team aus Physikerinnen und Physikern der Christian-Albrechts-Universität zu Kiel (CAU) und der University of Colorado in Boulder, USA, hat jetzt eine neue Messmethode entwickelt, die eine eindeutige Klassifikation von Isolatoren erlaubt. Die Studie dazu erschien nun im Online-Fachmagazin Nature Communications.

Kein Laptop, kein Handy, keine Digitalkamera und kein anderes elektronisches Gerät würden ohne elektrische Isolatoren funktionieren. So schnell wie sich elektronische Geräte heute entwickeln, so groß ist auch der Bedarf an genauen Kenntnissen über bereits eingesetzte oder auch neue Isolatormaterialien. Deshalb ist die Untersuchung ihrer Eigenschaften einschließlich ihrer Klassifizierung ein hochaktuelles Teilgebiet der Festkörperforschung.

Wie in der Physik üblich, werden die Eigenschaften solcher isolierender Materialien zuerst anhand allgemeingültiger Gleichungen beschrieben und mit Computermodellen berechnet. Ob die in der Theorie gewonnenen Erkenntnisse tatsächlich stimmen, muss anschließend durch Experimente an den Materialien im Labor überprüft werden. Beim experimentellen Nachweis einer Reihe von Isolatoren versagten bislang herkömmliche Messverfahren. „Über viele Jahre drehten sich die Diskussionen unter Fachleuten über einige Isolatoren im Kreis“, sagt Projektleiter Kai Roßnagel vom Institut für Experimentelle und Angewandte Physik der CAU. Mit der aktuellen Studie, so Roßnagel, habe man einen ganz neuen Weg gefunden, das Isolationsverhalten von Materialien experimentell und objektiv zu klassifizieren.

Das Physiker-Team nutzte für die Methode einen besonderen Effekt: Manche elektrischen Leiter werden bei starker Abkühlung zu Isolatoren. Damit geht einher, dass sich ihr elektrischer Zustand ändert, also bestimmte Eigenschaften der Elektronen des Materials. Wenn sich das Material wieder erwärmt, verändert sich auch der elektrische Zustand wieder. Wie schnell diese Veränderung von Isolator hin zum Leiter abläuft, erfassen die Wissenschaftlerinnen und Wissenschaftler nun, um die unterschiedlichen Isolatorklassen zu unterscheiden.

Geradezu unfassbar sind die winzigen Zeitskalen, auf der die Forscherinnen und Forscher mit der Methode arbeiten: Für die Untersuchung wird ein Film aus vielen einzelnen Bildern erzeugt, die mit einer Laserkamera im Abstand von Femtosekunden geschossen werden. Zum Vergleich: Würde man eine Sekunde lang jede Femtosekunde ein Bild aufnehmen, hätte man am Ende 1.000.000.000.000.000 Einzelbilder. Eine herkömmliche Filmkamera erzeugt pro Sekunde nur 24 Einzelbilder. „Bei einigen Isolatoren dauert die im Film sichtbare Veränderung der elektrischen Eigenschaften etwa ein bis fünfzig Femtosekunden, bei anderen dauert sie 100 bis 200 Femtosekunden“, erläutert Roßnagel. Auf diese Weise lassen sich zwei unterschiedliche Isolatorklassen voneinander unterscheiden.

Der in der Fachwelt heiß diskutierte Isolator Titandiselenid (TiSe2) war eines der untersuchten Materialien. Das Team klassifizierte das Material nicht nur eindeutig, es wies sogar zum ersten Mal experimentell eine neue Isolatorklasse nach: den so genannten exzitonischen Isolator. „Wir denken, unsere Ergebnisse könnten die Diskussion um das Titandiselenid nach vier Jahrzehnten endlich beenden“, sagt Roßnagel. Doch wie immer in der Wissenschaft, so meint der Kieler Physiker, müsse man davon ausgehen, dass die neuen Ergebnisse von der Fachwelt nicht ohne Widerspruch aufgenommen würden. „Ob ein neues wissenschaftliches Ergebnis tatsächlich Bestand hat, stellt sich stets erst nach Jahren der Gegenproben heraus.“

Die für die neue Klassifikationsmethode eingesetzte Kameratechnik hatte das Forscherteam im März 2011 im Fachmagazin Nature vorgestellt und in der nun erschienenen Studie erstmals systematisch eingesetzt. Die Technik heißt „Femtosekunden-zeitaufgelöste Photoelektronen-Spektroskopie mit extremer Ultraviolettstrahlung“. Die aktuelle Studie entstand im Schwerpunkt Kieler Oberflächen- und Nanowissenschaften, einem von vier Forschungsschwerpunkten der CAU. Finanziert wurde sie auf deutscher Seite durch das Bundesministerium für Bildung und Forschung.

Originalpublikation:
S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange, A. Carr, M.M. Murnane, H.C. Kapteyn, L. Kipp, M. Bauer, K. Rossnagel (2012): Time-domain classification of charge-density-wave insulators, Nature Communications 3: 1069, doi: 10.1038/ncomms2078
http://www.nature.com/ncomms/journal/v3/n9/full/ncomms2078.html

Weitere Informationen:
Zusatzinformationen zum Messprinzip (pdf-Download):
http://www.uni-kiel.de/download/pm/2012/2012-265-zusatzinformation.pdf
Link zum Nature Paper (March 2011):
http://www.nature.com/nature/journal/v471/n7339/full/nature09829.html

Zwei Fotos stehen zum Download bereit:

http://www.uni-kiel.de/download/pm/2012/2012-265-1.jpg
Bildunterschrift: Lasersystem zur Erzeugung der ultrakurzen Röntgenpulse, mit denen die Filmaufnahmen im Experiment gemacht werden.
Copyright: CAU, Foto: Rohwer et al.

http://www.uni-kiel.de/download/pm/2012/2012-265-2.jpg
Bildunterschrift: Die bei der Isolatorklassifikation untersuchten Kristalle stellte das Forschungsteam in der Kristallzucht im Kieler Labor her.
Copyright: CAU, Foto: Maack

Kontakt:
Dr. Kai Roßnagel
Institut für Experimentelle und Angewandte Physik
Tel. ++49/431/880-3876
E-Mail: rossnagel@physik.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de/aktuell/pm/2012/2012-265-isolatoren-rossnagel.shtml

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hochgeladenes Ion bahnt den Weg zu neuer Physik
11.12.2019 | Max-Planck-Institut für Kernphysik

nachricht Vom Staubkorn zum Planeten – Rätsel um Kollisionsbarriere gelöst
11.12.2019 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics