Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schicht in Ordnung

18.07.2016

Physiker der Universität Jena weisen gemeinsam mit Partnern erstmals flexible zweidimensionale Kristallgitter nach

Vor 20 Jahren waren Mobiltelefone noch fast so dick wie eine Brotbüchse, heutige Smartphones hingegen sind fast so dünn wie Butterbrotpapier.


Die Physiker Prof. Dr. Torsten Fritz (l.) und Matthias Meißner an einem Rastertunnelmikroskop.

Foto: Jan-Peter Kasper/FSU

Ein Grund dafür sind immer neue Forschungsergebnisse im Bereich der organischen Elektronik. Denn vor allem Schichten aus organischen Molekülen, die auf eine – meist metallische – Trägerstruktur aufgetragen werden, haben sich aufgrund ihrer geringen Stärke und ihrer halbleitenden und optischen Eigenschaften für Displays bewährt.

Um diese Methode weiterzuentwickeln, ist es deshalb notwendig, mehr darüber zu erfahren, was zwischen Molekül und Metall – oder auch zwischen verschiedenen Molekülschichten – passiert.

Ein wichtiger Fortschritt auf dem Forschungsgebiet dieser Grenzflächeneffekte ist jetzt Physikern der Friedrich-Schiller-Universität Jena gemeinsam mit Kollegen aus Mainz und Dresden gelungen. Sie haben herausgefunden, dass sich Kristallgitter organischer Moleküle flexibel auf einem kristallinen Trägersubstrat ausrichten. Ihre Ergebnisse haben die Jenaer Forscher in dem renommierten Fachjournal ACS Nano veröffentlicht.

Ein flexibles Kristallgitter gebildet

„Die etwa einen Nanometer großen Moleküle richten sich auf den im atomaren Maßstab gewellten Trägerstrukturen oft auf die gleiche Weise aus, um optimales Schichtwachstum zu erreichen“, sagt Prof. Dr. Torsten Fritz von der Universität Jena. „Dabei wachsen sie wie Kohlköpfe auf einem Acker in den entsprechenden Vertiefungen bzw. Ackerfurchen“, veranschaulicht der Festkörperphysiker.

„Das ist auch nicht überraschend, wenn beide Gitter strukturell zueinander passen – etwa als wenn man Eierpackungen aufeinanderstapelt.“ Doch auch wenn diese Deckungsgleichheit nicht vorliegt, ordnen sich die Moleküle häufig regelmäßig und hochgeordnet an. Um den Grund dafür näher bestimmen zu können, vermaßen die Jenaer Physiker die Kristallgitter der Moleküle mithilfe eines Rastertunnelmikroskops.

Dabei konnten sie zum ersten Mal nachweisen, dass die Moleküle ein flexibles Kristallgitter bilden. „Dieses ermöglicht es den Molekülen, sich so auf dem Trägersubstrat auszurichten, dass sie die größte Menge an Energie aus diesem Prozess herausholen“, erklärt Matthias Meißner, der die Experimente durchgeführt hat.

„Um im Bild zu bleiben: Die Kohlköpfe rollen, da sie miteinander verbunden sind, zwar nicht mehr alle in die Ackerfurchen, aber im Rahmen ihrer flexiblen Verbindungen richten sie sich so aus, dass sie alle den weitesten Weg herunterrollen und die größtmögliche Menge an potenzieller Energie freisetzen.“

Im Kristallgitter entstehe dabei eine Art Oberflächenspannung, deren Energie aber geringer sei als der Zugewinn, den man durch diese effiziente Auslenkung erreicht. Wichtig ist dabei, dass die Verbindungen flexibel sind und nicht starr. „Die Kohlköpfe sind sozusagen mit Gummibändern miteinander verbunden, nicht mit Holzstäben“, erklärt Fritz.

Das Phänomen sei zwar insgesamt nicht unbekannt gewesen, doch habe man ihm bisher kaum Bedeutung beigemessen. Durch den erstmaligen Nachweis der flexiblen Kristallgitter konnte Matthias Meißner ein Modell entwickeln und in Kooperation mit Theoretischen Physikern der Universität Jena den Effekt mathematisch beschreiben.

Für zukünftige technische Innovationen – etwa während der Entwicklung neuartiger Displays und Solarzellen – lässt sich das geordnete Wachstum der Molekülschichten auf nicht exakt passenden Oberflächen besser berücksichtigen bzw. kann man es sich vielleicht sogar zunutze machen, um definierte Grenzflächen zu erschaffen.

Ein Spezialist auf diesem Gebiet – der amerikanische Physiker Prof. Dr. Michael D. Ward von der New York University – veröffentlichte einen zusätzlichen Beitrag in ACS Nano, um die Ergebnisse der Jenaer Forscher zu würdigen und einzuordnen. Sein äußerst positives Fazit: Die neuen Ergebnisse machen die Erstellung molekularer Schichten interessanter, obwohl sie dadurch wahrscheinlich gleichzeitig komplizierter werden.

Original-Publikation:
Matthias Meissner et. al.: Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves, ACS Nano, Article ASAP, DOI: 10.1021/acsnano.6b00935
Web: http://dx.doi.org/10.1021/acsnano.6b00935

Kontakt:
Prof. Dr. Torsten Fritz
Institut für Festkörperphysik der Universität Jena
Helmholtzweg 5, 07743 Jena
Tel.: 03641 / 947400
E-Mail: torsten.fritz[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Sebastian Hollstein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics