Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schalter aus einem Atom

02.09.2013
Konstanzer Physikern gelingt der Nachweis der Informationsspeicherung durch elektrische Manipulation eines einzelnen Atoms

Die Miniaturisierung der Mikroelektronik führt zu immer kleineren Strukturen. Seit einigen Jahren lassen sich mit verschiedenen Techniken Schaltelemente herstellen, deren Funktionsweise in der Beeinflussung einzelner Atome vermutet wird.

Dass die Funktion eines solchen Schalters tatsächlich auf der Umlagerung eines einzelnen Atoms beruhen kann, konnte die Arbeitsgruppe der Konstanzer Experimentalphysikerin Prof. Dr. Elke Scheer zusammen mit Kollegen aus der Theoretischen Physik nun nachweisen.

Dies gelang durch die genaue Analyse der Transporteigenschaften bei tiefen Temperaturen. Neu ist auch das einfache Konzept des Schalters: Für die Schaltung des Stromes sind nicht die im Transistor üblichen drei Elektroden nötig, sondern nur zwei, was die Herstellung wesentlich vereinfacht. Die Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift „Nature Nanotechnology“ erschienen.

Ausgangsmaterial ist ein dünner Aluminiumdraht, bestehend aus einer „Nanobrücke“, die lediglich zwei Mikrometer lang und an ihrer engsten Stelle etwa 100 Nanometer dick ist. Durch Ziehen lässt sich die Brücke bis auf ein Atom verengen, öffnen und wieder zusammenschieben. Dies geschieht mit einem Verfahren, das unter dem Namen „mechanisch kontrollierte Bruchkontakte“ bekannt ist.

Für die Realisierung des Einzelatomschalters und die damit einhergehende Speicherfunktion setzte Dr. Christian Schirm, ein ehemaliger Doktorand in der Gruppe von Elke Scheer, Strompulse ein. Durch die präzise Kontrolle des fließenden Stromes konnte er dafür sorgen, dass sich der Widerstand des Kontaktes ändert. Computergestützte Rechnungen des Doktoranden und theoretischen Physikers Manuel Matt, betreut von Prof. Dr. Peter Nielaba und Juniorprofessor Dr. Fabian Pauly, zeigten, dass sich gemessene Widerstandsänderungen durch die Umlagerung eines einzelnen Atoms erklären lassen.

Das umgelagerte Atom bleibt im neuen Zustand so lange stabil, bis ein Strompuls in umgekehrter Richtung einwirkt. Die aus der Umlagerung resultierende Widerstandsänderung ist noch immer so groß, dass sie sich ohne besondere Anforderungen an die Messelektronik nachweisen lässt. Die Stabilität in beiden Schaltzuständen eröffnet die Möglichkeit, den Schalter als binären Informationsspeicher mit den Zuständen „0“ (hoher Widerstand) und „1“ (niedriger Widerstand) zu verwenden.

In der Mikroelektronik werden solche Speicher üblicherweise durch Transistoren realisiert. Ein Transistor ist ein „three-terminal device“, ein Bauelement, das je eine Elektrode benötigt, durch die der Strom hinein- und wieder herausfließt, sowie eine dritte Zuleitung, die dafür sorgt, dass der Schalter geöffnet und geschlossen wird. „Es ist sehr schwer, diese drei Elektroden auf der Nanoskala zu implementieren“, beschreibt Elke Scheer die Problematik. Das Konstanzer Team, das durch den Gastwissenschaftler Prof. Dr. Juan Carlos Cuevas von der Universität Madrid verstärkt wurde, baute den Schalter stattdessen als „two-terminal device“. Er benötigt also lediglich zwei Zuleitungen, die beide sowohl zum Auslesen des Schaltzustands sowie zu dessen Änderung genutzt werden.

Das Experiment wurde im Bereich von 300 Millikelvin über dem absoluten Nullpunkt durchgeführt. Solch tiefe Temperaturen sind notwendig, weil der Nachweis der Umlagerung eines einzelnen Atoms nur im supraleitenden Zustand gelingt, einem exotischen Materiezustand, in dem die Transporteigenschaften auf charakteristische Weise von der angelegten Spannung abhängen. Der Schalter und Speicher selbst funktioniert jedoch auch bei Raumtemperatur.

Bedingt durch die Notwendigkeit, bei der Speicherung von Informationen immer höhere Geschwindigkeiten zu erzielen, den Materialverbrauch zu reduzieren und die Kosten zu senken, sind Transistoren als Schlüsselelemente bei der Schaltung eines Stromkreises bis heute auf die Größenordnung weniger Nanometer geschrumpft. Der Ein-Atom-Transistor stellt dabei möglicherweise den Informationsspeicher der Zukunft dar. „Wir haben in unserer Arbeit das Grundprinzip demonstriert. Ähnlich wie bei Konzepten für Quantencomputer und Bauelemente aus einzelnen Molekülen wird die Umsetzung dieses Traumes in die Praxis weitere Anstrengungen und innovative Lösungen erfordern“, so Elke Scheer.

Originalveröffentlichung:
C. Schirm, M. Matt, F. Pauly, J. C. Cuevas, P. Nielaba and E. Scheer: A current-driven single-atom memory, Nature Nanotechnology (2013); DOI: 10.1038/nnano.2013.170
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
http://www.uni-konstanz.de
Prof. Dr. Elke Scheer
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4712
E-Mail: Elke.Scheer@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics