Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schalter aus einem Atom

02.09.2013
Konstanzer Physikern gelingt der Nachweis der Informationsspeicherung durch elektrische Manipulation eines einzelnen Atoms

Die Miniaturisierung der Mikroelektronik führt zu immer kleineren Strukturen. Seit einigen Jahren lassen sich mit verschiedenen Techniken Schaltelemente herstellen, deren Funktionsweise in der Beeinflussung einzelner Atome vermutet wird.

Dass die Funktion eines solchen Schalters tatsächlich auf der Umlagerung eines einzelnen Atoms beruhen kann, konnte die Arbeitsgruppe der Konstanzer Experimentalphysikerin Prof. Dr. Elke Scheer zusammen mit Kollegen aus der Theoretischen Physik nun nachweisen.

Dies gelang durch die genaue Analyse der Transporteigenschaften bei tiefen Temperaturen. Neu ist auch das einfache Konzept des Schalters: Für die Schaltung des Stromes sind nicht die im Transistor üblichen drei Elektroden nötig, sondern nur zwei, was die Herstellung wesentlich vereinfacht. Die Ergebnisse sind in der aktuellen Ausgabe der Zeitschrift „Nature Nanotechnology“ erschienen.

Ausgangsmaterial ist ein dünner Aluminiumdraht, bestehend aus einer „Nanobrücke“, die lediglich zwei Mikrometer lang und an ihrer engsten Stelle etwa 100 Nanometer dick ist. Durch Ziehen lässt sich die Brücke bis auf ein Atom verengen, öffnen und wieder zusammenschieben. Dies geschieht mit einem Verfahren, das unter dem Namen „mechanisch kontrollierte Bruchkontakte“ bekannt ist.

Für die Realisierung des Einzelatomschalters und die damit einhergehende Speicherfunktion setzte Dr. Christian Schirm, ein ehemaliger Doktorand in der Gruppe von Elke Scheer, Strompulse ein. Durch die präzise Kontrolle des fließenden Stromes konnte er dafür sorgen, dass sich der Widerstand des Kontaktes ändert. Computergestützte Rechnungen des Doktoranden und theoretischen Physikers Manuel Matt, betreut von Prof. Dr. Peter Nielaba und Juniorprofessor Dr. Fabian Pauly, zeigten, dass sich gemessene Widerstandsänderungen durch die Umlagerung eines einzelnen Atoms erklären lassen.

Das umgelagerte Atom bleibt im neuen Zustand so lange stabil, bis ein Strompuls in umgekehrter Richtung einwirkt. Die aus der Umlagerung resultierende Widerstandsänderung ist noch immer so groß, dass sie sich ohne besondere Anforderungen an die Messelektronik nachweisen lässt. Die Stabilität in beiden Schaltzuständen eröffnet die Möglichkeit, den Schalter als binären Informationsspeicher mit den Zuständen „0“ (hoher Widerstand) und „1“ (niedriger Widerstand) zu verwenden.

In der Mikroelektronik werden solche Speicher üblicherweise durch Transistoren realisiert. Ein Transistor ist ein „three-terminal device“, ein Bauelement, das je eine Elektrode benötigt, durch die der Strom hinein- und wieder herausfließt, sowie eine dritte Zuleitung, die dafür sorgt, dass der Schalter geöffnet und geschlossen wird. „Es ist sehr schwer, diese drei Elektroden auf der Nanoskala zu implementieren“, beschreibt Elke Scheer die Problematik. Das Konstanzer Team, das durch den Gastwissenschaftler Prof. Dr. Juan Carlos Cuevas von der Universität Madrid verstärkt wurde, baute den Schalter stattdessen als „two-terminal device“. Er benötigt also lediglich zwei Zuleitungen, die beide sowohl zum Auslesen des Schaltzustands sowie zu dessen Änderung genutzt werden.

Das Experiment wurde im Bereich von 300 Millikelvin über dem absoluten Nullpunkt durchgeführt. Solch tiefe Temperaturen sind notwendig, weil der Nachweis der Umlagerung eines einzelnen Atoms nur im supraleitenden Zustand gelingt, einem exotischen Materiezustand, in dem die Transporteigenschaften auf charakteristische Weise von der angelegten Spannung abhängen. Der Schalter und Speicher selbst funktioniert jedoch auch bei Raumtemperatur.

Bedingt durch die Notwendigkeit, bei der Speicherung von Informationen immer höhere Geschwindigkeiten zu erzielen, den Materialverbrauch zu reduzieren und die Kosten zu senken, sind Transistoren als Schlüsselelemente bei der Schaltung eines Stromkreises bis heute auf die Größenordnung weniger Nanometer geschrumpft. Der Ein-Atom-Transistor stellt dabei möglicherweise den Informationsspeicher der Zukunft dar. „Wir haben in unserer Arbeit das Grundprinzip demonstriert. Ähnlich wie bei Konzepten für Quantencomputer und Bauelemente aus einzelnen Molekülen wird die Umsetzung dieses Traumes in die Praxis weitere Anstrengungen und innovative Lösungen erfordern“, so Elke Scheer.

Originalveröffentlichung:
C. Schirm, M. Matt, F. Pauly, J. C. Cuevas, P. Nielaba and E. Scheer: A current-driven single-atom memory, Nature Nanotechnology (2013); DOI: 10.1038/nnano.2013.170
Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 / 88-3603
E-Mail: kum@uni-konstanz.de
http://www.uni-konstanz.de
Prof. Dr. Elke Scheer
Universität Konstanz
Fachbereich Physik
Universitätsstraße 10
78464 Konstanz
Telefon: 07531 / 88-4712
E-Mail: Elke.Scheer@uni-konstanz.de

Julia Wandt | idw
Weitere Informationen:
http://www.www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics