Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker testen selbstangetriebene Tröpfchen als Mini-Transporter

07.06.2018

In den Lebenswissenschaften arbeiten Forscher daran, mithilfe winziger „Transportvehikel“ Arzneistoffe oder andere Moleküle in den menschlichen Körper zu schleusen. Dass hierfür auch kleine Emulsionströpfchen in Frage kommen, haben Forscher der Universität des Saarlandes und der Universität Barcelona anhand eines Modellsystems gezeigt: Sie haben eine Methode zur Erzeugung selbstangetriebener flüssiger Tröpfchen entwickelt, die in der Lage sind, räumlich und zeitlich kontrollierte Lieferungen einer „Molekülfracht“ durchzuführen. Die Studie wurde in „Communications Physics“ veröffentlicht.

„Tröpfchen als Mini-Transporter etwa in der Biomedizin einzusetzen, ist ein Ziel, an dem schon seit einiger Zeit gearbeitet wird“, sagt Ralf Seemann, Professor für Experimentalphysik an der Universität des Saarlandes. Diese Tröpfchen könnten sich bisher jedoch nur passiv durch den Körper bewegen, beispielsweise mit dem Blutstrom.


Entwicklung eines Janus-Tropfens: Die Abbildung zeigt Wasser-Ethanol-Tröpfchen in einer Öl-Tensid-Mischung, der ein fluoreszierender Farbstoff beigemischt wurde. Unten: gemessene Strömungsprofile.

Abb.: Menglin Li

Für ihre aktuelle Studie über aktive „Mikroschwimmer“ experimentierten die Saarbrücker Physiker nun mit einem Modellsystem, das sich zu sogenannten Janus-Tröpfchen entwickelt: Sie fanden heraus, dass diese sich aktiv fortbewegen können und sich zudem als „smart Carrier“ zum gezielten Transportieren und Absetzen einer Fracht nutzen lassen.

Janus-Tröpfchen bestehen aus zwei unterschiedlichen Teilen: in der aktuellen Studie aus einem wasserreichen Tröpfchen im vorderen Teil und einem ethanol- und tensidreichen Tröpfchen am Ende. Die Ursache für die besonderen Fähigkeiten der Janus-Tröpfchen liegt in ihrer Entstehung: Sie durchlaufen insgesamt drei Entwicklungsstadien, in denen unterschiedliche Wechselwirkungen mit der Umgebung stattfinden. Diese Effekte konnten die Forscher für die „Programmierung“ der Tröpfchen als aktive Träger nutzen.

„Ausgangspunkt sind homogene Tröpfchen, die aus einer Wasser-Ethanol-Mischung erzeugt werden. Diese Tröpfchen treiben in einer Ölphase, in der ein Tensid gelöst ist“, erläutert Jean-Baptiste Fleury, der als Habilitand am Lehrstuhl forscht. In der ersten Entwicklungsphase tritt Ethanol aus dem Tröpfchen aus und löst sich in der umgebenden Ölphase. Hierdurch entstehen unterschiedliche Oberflächenspannungen auf der Tropfenoberfläche, durch die so genannte Marangoni-Flüsse auf der Oberfläche sowie im Tropfen in Gang gesetzt werden.

„Beim Marangoni-Effekt wandern Flüssigkeiten vom Ort niedriger Oberflächenspannung zum Ort hoher Oberflächenspannung“, erläutert Martin Brinkmann das physikalische Prinzip. Der promovierte Physiker ist ebenfalls Teil des Forscherteams. „Während des ersten Stadiums treiben diese Marangoni-Flüsse das Teilchen vorwärts – eine aktive Bewegung, die durch den kontinuierlichen Verlust von Ethanol in die Ölphase verursacht wird“.

Gleichzeitig wandern Tenside aus der Ölphase in den Tropfen ein, da sie sich vor allem mit dem darin enthaltenen Ethanol umgeben wollen. Schließlich kommt es zu einer Entmischung von Wasser und Ethanol, in deren Folge sich im Tropfen zunächst kleine Ethanol-Tensid-Tröpfchen bilden, die schnell miteinander verschmelzen und sich aufgrund der Strömung innerhalb des Tropfens am hinteren Ende ansammeln. Am Ende von Stadium zwei hat sich so ein charakteristischer Janus-Tropfen gebildet.

Da die Tenside auf der Oberfläche des wasserreichen Tropfens im folgenden dritten Stadium nach wie vor von dem hinteren, ethanolreichen Tropfen „abgesaugt“ werden, ist die Oberflächenspannung am hinteren Teil der Oberfläche erhöht. Dieses Gefälle lässt die Flüssigkeit an der Oberfläche des vorderen Tropfens in Richtung der höheren Grenzflächenspannung strömen und setzt so den gesamten Janus-Tropfen in Bewegung.

„Im Verlauf ihrer Entstehung weisen die Janus-Tröpfchen also spezifische Antriebsmechanismen auf; überdies erzeugen sie in den Stadien unterschiedliche Strömungsfelder“, sagt Martin Brinkmann.

Die Saarbrücker Forscher haben die Bewegungen der Janus-Tröpfchen präzise vermessen. „Wir können beobachten, wie sie sich während ihrer Entwicklung, die etwa zehn bis fünfzehn Minuten dauert, in der Versuchszelle bewegen und – je nach Entwicklungsstadium – unterschiedlich mit Hindernissen interagieren“, erklärt Jean-Baptiste Fleury. Die Länge der einzelnen Entwicklungsstadien lasse sich über die anfängliche Ethanol- Konzentration im Tröpfchen und seine Größe steuern.

Um ihre Fähigkeiten als Transporter zu testen, wurden die Tröpfchen im Experiment zudem mit DNA-Molekülen als Fracht beladen, die sich in der ethanolreichen Phase ansammeln. „Unser Carrier kann selektiv an Hindernissen einer bestimmten Geometrie und Oberflächenbeschaffenheit entlangwandern und seine Fracht auch gezielt ablegen“, fasst Prof. Seemann die Ergebnisse seiner Arbeitsgruppe zusammen. Damit beschreibe die Studie ein erstes, aber einfaches Beispiel für einen programmierbaren aktiven Träger, der in der Lage ist, räumlich und zeitlich kontrollierte Fracht-Lieferungen durchzuführen.

Link zur Studie: https://www.nature.com/articles/s42005-018-0025-4
(DOI: 10.1038/s42005-018-0025-4)

Kontakt:
Universität des Saarlandes – Institut für Experimental Physik
Dr. Jean-Baptiste Fleury
Tel.: +49(0) 681 302-71712
E-Mail: jean-baptiste.fleury@physik.uni-saarland.de

Dr. Martin Brinkmann
Tel.: +49(0) 681 302-71762
E-Mail: martin.brinkmann@physik.uni-saarland.de

Prof. Dr. Ralf Seemann
Tel.: +49(0) 681 302-71799
E-Mail: r.seemann@physik.uni-saarland.de

Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung mit Direktanwahl oder über ARD-Sternpunkt 106813020001). Interviewwünsche bitte an die Pressestelle (0681 302-2601) richten.

Gerhild Sieber | Universität des Saarlandes
Weitere Informationen:
http://www.uni-saarland.de

Weitere Berichte zu: Blutstrom Ethanol Fracht Mini-Transporter Oberflächenspannung Tenside Tropfen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics