Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Saarbrücker Physiker entwickeln hocheffizienten Mikrowellen-Detektor für Quantencomputer

19.09.2012
Die Quantenforschung nutzt zur Übertragung von Informationen nicht nur Photonen des sichtbaren Lichts, sondern zunehmend auch Teilchen von Mikrowellenstrahlung. Sie sind etwa für Prozessoren von Quantencomputern von Bedeutung. Physikern der Universität des Saarlandes ist es nun erstmals gelungen, einen Photodetektor für Mikrowellen zu entwickeln, der mit nahezu hundertprozentiger Effizienz arbeitet. Die wissenschaftliche Arbeit wurde jetzt in „Physical Review A“ publiziert.

Die Quantenkommunikation nutzt einzelne Lichtteilchen, um Informationen zu übertragen. Dabei werden die Lichtteilchen von Photodetektoren in elektrische Signale umgewandelt. Die physikalische Messgrenze der Strahlungsmessung ist dann erreicht, wenn einzelne Photonen, also unteilbare Einheiten der Strahlung, detektiert werden können. Bisher setzte man hierzu meist Photonen im Bereich des sichtbaren Lichts ein.


Der neue Mikrowellen-Photodetektor.
Foto: Robert McDermott

Seit einigen Jahren nutzen Wissenschaftler aber auch Photonen mit Mikrowellenstrahlung mit Frequenzen, wie sie etwa beim Handy vorkommen (1 bis 300 Gigahertz). Die Erzeugung und die Messung der Photonen findet dabei auf einem winzigen Computerchip statt, bei Temperaturen nahe des absoluten Nullpunkts (-273 Grad Celsius). „Lange galt es aber als prinzipiell unmöglich, einzelne Quanten von Mikrowellen zu zählen, da deren Energie rund 100.000 mal schwächer ist als die Energie von Lichtteilchen aus einer Glühbirne“, erklärt Frank Wilhelm-Mauch, Professor für Theoretische Physik an der Saar-Uni.

Gemeinsam mit Kollegen aus Kanada und Wisconsin ist ihm bereits im vergangenen Jahr jedoch genau das gelungen: Die Wissenschaftler entwickelten ein elektronisches Bauelement, das einzelne Mikrowellenphotonen detektieren kann. Dieser so genannte Josephson-Photomultiplikator bildet die Arbeitsweise normaler Photonendetektoren in einem kompakten elektronischen Bauelement nach.

Nun hat Frank Wilhelm-Mauch zusammen mit dem Gast-Masterstudenten Luke Govia und der Postdoktorandin Emily Pritchett den Detektor so weiterentwickelt, dass er Photonen mit nahezu hundertprozentiger Effizienz nachweisen kann. Dabei kommt ein besonderes Merkmal der Quantenphysik, also der Physik der kleinsten Teilchen, ins Spiel: Die Teilchen – Photonen oder Atome – können in der Quantenwelt mehrere Zustände gleichzeitig einnehmen. Sobald eine Messung erfolgt, bleibt nur noch ein einziger Zustand übrig: der ermittelte Messwert.

„Praktisch bedeutet das, dass sich Zustände von Quantensystemen bei der Beobachtung verändern“, erläutert Frank Wilhelm-Mauch. Für einen optimalen Detektor möchte man diese Veränderung so klein halten, wie es die Gesetze der Physik fordern. So soll nur die Information aus dem Quantenzustand verloren gehen, die man auch abgelesen hat. Die Wissenschaftler der Saar-Uni zeigen in ihrer Arbeit, wie das möglich ist: Man unterdrückt Quanteneffekte bereits im Detektor. Dieser unterscheidet also nicht viele verschiedene Zustände eines Photons, sondern nur zwischen weiß und schwarz, also: Ich habe Photonen oder nicht. „Gelungen ist uns das, indem wir einen elektrischen Widerstand an der richtigen Stelle eingebaut haben“, meint Wilhelm-Mauch.

Die Saarbrücker Physiker erwarten, dass diese Detektoren einerseits eingesetzt werden, um Elemente von Prozessoren in Quantencomputern zu vernetzen. Andererseits erlaubt diese Messung von Mikrowellen am Quantenlimit auch Anwendungen in der Astrophysik bei der Erforschung der kosmischen Hintergrundstrahlung oder der Suche nach dunkler Energie.

Ein Foto vom neuen Detektor können Sie unter folgendem Link herunterladen:
http://www.uni-saarland.de/pressefotos
Link zur Publikation: http://pra.aps.org/abstract/PRA/v86/i3/e032311
Kontakt:
Prof. Dr. Frank Wilhelm-Mauch
Tel. 0681 302-3960
E-Mail: fwm@physik.uni-saarland.de

Gerhild Sieber | idw
Weitere Informationen:
http://www.uni-saarland.de
http://pra.aps.org/abstract/PRA/v86/i3/e032311

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics