Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn‘s beim Wachsen knistert

01.08.2013
Wenn Tropfen oder Staubteilchen verschmelzen, gelten oft ähnliche Gesetze wie beim Knistern eines Papiers

Ob bei Öltröpfchen in homogenisierter Milch, Staubteilchen im frühen Sonnensystem oder kleinsten magnetischen Bezirken in Ferromagneten − in vielen Fällen, in denen sich Teile zu einem Ganzen zusammenballen, gilt: Gleich und gleich gesellt sich gern. Oder richtiger: gleichgroß und gleichgroß.


Gleich und gleich gesellt sich gern: In vielen Fällen, in denen sich wie hier beim Wachstum von Tropfen Teile zu einem Ganzen zusammenballen, verschmelzen bevorzugt Teile von ähnlicher Größe.

© MPI für Dynamik und Selbstorganisation


Knüllt man ein Papier zusammen, knistert es: Es tritt eine breite Spanne lauter und leiser Geräusche auf. Rechts: Auch die Kantenlängen des wiederaufgefalteten Papiers folgen der „Knisterverteilung.“

© www.sxc.hu

Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation, der Universität Göttingen und der Azarbayjan Shahid Madani Universität in Iran konnten nun erstmals zeigen, dass es bei solchen Wachstumsprozessen ‚knistert’.

Gemeint ist folgendes: Die einzelnen Teile machen beim Wachstum immer wieder Sprünge, deren Größe zufällig verteilt ist. Diese Zufälligkeit folgt denselben statistischen Gesetzen wie die Schwankungen der Lautstärke, die ein knisterndes Blatt Papier erzeugt. Die neuen Berechnungen helfen unter anderem auch zu verstehen, wie Ferromagnete nach und nach magnetisieren.

Wenn ein Glas vom Tisch fällt und auf dem Boden zerschellt, ist das – aus Sicht des Physikers – nicht ärgerlich, sondern vor allem hochinteressant. Denn die Bruchstücke, die dabei entstehen, sind alle ähnlich groß: Einige große Scherben hebt man mit der Hand auf; bei den etwas kleineren greift man zu Schwammtuch oder Staubsauger. Mikroskopisch kleine Splitter finden sich hingegen so gut wie nie. „In vielen Wachstumsprozessen, die uns in der Natur begegnen, spielt sich dieser Prozess sozusagen rückwärts ab“, erklärt Jan Nagler, Forscher am Max-Planck-Institut für Dynamik und Selbstorganisation. „In erster Linie vereinigen sich Teilsysteme ähnlicher Größe, um ein neues Ganzes zu bilden.“

Doch wie wachsen diese Systeme genau? „Unsere Rechnungen haben gezeigt, dass solche Wachstumsprozesse ,knistern‘ “, fasst Nagler die Ergebnisse der neuen Studie zusammen und schlägt ein Gedankenexperiment vor: „Nehmen wir an, eine Gruppe etwa gleichgroßer Tropfen würde Schritt für Schritt verschmelzen und bei jedem Schritt einen Ton von sich geben: einen leisen Ton, wenn der größte Tropfen, der dabei entsteht, nur wenig wächst; einen lauten Ton, wenn der größte Tropfen einen erheblichen Wachstumsschub macht.“

Eine Art Symphonie des Wachsens

Das Wachsen der Tropfen wird dann von einer Abfolge von Tönen verschiedener Lautstärke begleitet – einer Art Symphonie des Wachsens. „Das Geräusch, das so entsteht, ist ein Knistern. Es ähnelt dem eines Papiers, das in der Hand zerknüllt wird“, so Nagler.

„Jeder von uns hat das – ob aus Wut, Frustration oder zum Zeitvertreib − schon tausendmal gemacht“, so Malte Schröder, Masterstudent an der Universität Göttingen. Doch es lohne sich, dabei einmal ganz genau hinzuhören, fügt er hinzu. Denn beim Zerknüllen treten sowohl laute als auch deutlich leisere Geräusche auf, ähnlich wie bei einem knisternden Feuer. Leises Knistern wird manchmal durch ein sehr lautes Knacken unterbrochen. In beiden Fällen decken die Lautstärken eine breite Spanne ab.

Diese Verteilung beschreibt, was Physiker unter ‚Knistern‘ verstehen – und sie tritt längst nicht nur in Zusammenhang mit Geräuschen und Lautstärken auf. „Faltet man das zerknüllte Blatt wieder auf, so zeigt sich ein komplexes Muster aus langen und kürzeren Faltkanten“, so Nagler. Auch die Verteilung dieser Längen folgt dem „Knistergesetz“. Dasselbe gilt für die Stärke von Erdbeben oder Sonneneruption – und eben auch für die Wachstumssprünge beim Zusammenballen von Teilsystemen.

Die Bandbreite der möglichen, zufällig verteilten Wachstumssprünge nimmt dabei mit der Größe des Gesamtsystems zu. Das macht die Vorhersage in großen Systemen wesentlich schwieriger als in kleinen − und damit auch relevant für Materialien, die aus unzählig vielen Untersystemen bestehen, wie die Atome eines Magneten oder die unzähligen Knoten und Verbindungen in einem Netzwerk.

In Magneten dehnen sich die magnetischen Gebiete sprunghaft aus

In ihren Simulationen spielten die Forscher am Computer verschiedene Wachstumsprozesse durch. Dabei ging es ihnen weder um Öltröpfchen noch um Staubpartikel, sondern um eine allgemeine Beschreibung eines solchen Wachstumsvorgangs. Einzige Bedingung: Die Teilsysteme, die sich verbinden, müssen von ähnlicher Größe sein. „Mathematisch lassen sich solche Wachstumsprozesse gut im Rahmen einer neuen Netzwerktheorie beschreiben“, so Schröder. Das kleinstmögliche Subsystem wird durch einen Knoten symbolisiert. Vereinigen sich zwei Subsysteme, entsteht zwischen den Knoten eine Verbindungslinie – und so nach und nach ein Netzwerk.

In einem zweiten Schritt wandten sich die Forscher einem ganz konkreten System zu: ferromagnetischen Stoffen wie etwa Eisen, Nickel und Kobalt. Berührt man diese Stoffe mit einem Magneten, werden sie auch magnetisch. Im Inneren dieser Stoffe finden sich mikroskopische Gebiete, so genannte Weiß’sche Bezirke, die durch den Einfluss von außen nach und nach magnetisiert werden. Auf diese Weise entstehen immer größere zusammenhängende magnetische Gebiete und die Gesamtmagnetisierung steigt deshalb sprunghaft an.

„Da die Weiß’schen Bezirke alle von ähnlicher Größe sind, trifft unser Modell auch hier gut zu“, so Nagler. „Das sprunghafte Ansteigen der Magnetisierung und vor allem die Verteilung dieser Sprünge lässt sich mit unseren Rechnungen gut reproduzieren.“

In einem nächsten Schritt wollen die Forscher nun weitere Systeme identifizieren, welche die nötigen Voraussetzungen für knisterndes Wachstum mitbringen. Denkbar ist vieles – von Öltröpchen auf einer langsam verdampfenden Wasseroberfläche bis hin zu Fusionen etwa gleich großer Unternehmen in der Ökonomie.

Ansprechpartner

Dr. Jan Nagler
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-418
E-Mail: jan@­nld.ds.mpg
Dr. Birgit Krummheuer
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668
Fax: +49 551 5176-702
E-Mail: presse@­ds.mpg.de
Originalpublikation
Malte Schröder, S.H. Ebrahimnazhad Rahbari und Jan Nagler
Crackling Noise in Fractional Percolation
Nature Communications, 26. Juli 2013; doi:10.1038/ncomms3222

Dr. Jan Nagler | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7484067/tropfen_wachstum_knistern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

nachricht Weltrekord: Schnellste 3D-Tomographien an BESSY II
08.08.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics