Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rundum-Überwachung von Ceres beginnt

02.03.2015

Am 6. März wird die NASA-Raumsonde Dawn vom Schwerefeld des Zwergplaneten eingefangen

Ist Zwergplanet Ceres, der mit einem Durchmesser von etwa 950 Kilometern größte Bewohner des Asteroidengürtels, ein unveränderlicher, toter Brocken? Oder finden sich auf seiner Oberfläche Anzeichen geologischer Aktivität?


Diese Aufnahmen des Zwergplaneten Ceres wurden am 25. Februar 2015 aus einer Entfernung von 40000 Kilometern gewonnen. Die Auflösung der Kameradaten liegt bei 3,7 Kilometer pro Pixel.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Diesen Fragen wird die NASA-Raumsonde Dawn in den nächsten Monaten nachspüren. Am kommenden Freitag fängt das Schwerefeld des Himmelskörpers das Raumschiff ein und wird es in den folgenden Wochen auf eine Umlaufbahn lenken.

Dies ist der Startschuss für eine mindestens bis Mitte 2016 währende Rundum-Überwachung. Schon jetzt zeigen Fotos aus der letzten Anflugphase eine Vielfalt von Strukturen auf der Oberfläche des kugelförmigen Körpers, etwa helle Flecken, die möglicherweise aus Eis oder Salzen bestehen. Die Aufnahmen entstanden mit dem Kamerasystem an Bord, das unter Leitung des Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde.

Nach etwa zweieinhalbjährigem Flug durch den Asteroidengürtel erreicht die US-amerikanische Raumsonde Dawn am kommenden Freitag ihr Ziel: den Zwergplaneten Ceres, der zwischen den Umlaufbahnen von Mars und Jupiter seine Bahnen um die Sonne zieht. Für Dawn ist dies der zweite Forschungsaufenthalt im Asteroidengürtel. Bereits 2011 nahm das Vehikel den Asteroiden Vesta ins Visier und begleitete ihn mehr als ein Jahr lang. Dawn ist damit das erste Raumschiff in der Geschichte, das nacheinander zwei Körper umkreist.

Die beiden Forschungsobjekte könnten unterschiedlicher kaum sein. So entpuppte sich Vesta als steinig und trocken und ähnelt den inneren Planeten Merkur, Venus, Erde und Mars. Ceres hingegen besteht nach Schätzungen der Forscher zu etwa 25 Prozent aus Wasser. Dawn geht nicht zuletzt der Frage nach, wie sich zwei nach kosmischen Maßstäben so eng benachbarte Körper so verschieden entwickeln konnten.

„Ceres genau zu untersuchen, ist wie eine Art Geschichtsforschung im Weltall“, sagt Jim Green, Direktor der Planetary Science Division der amerikanischen Weltraumbehörde NASA. „Daten, die Dawn zur Erde schickt, könnten uns dabei helfen zu verstehen, wie das Sonnensystem entstand.“

Sowohl Vesta als auch Ceres waren vor 4,5 Milliarden Jahren auf dem besten Wege, sich zu ausgewachsenen Planeten zu entwickeln. Der gleichzeitig entstehende Riesenplanet Jupiter machte ihnen jedoch Konkurrenz: Seine gewaltige Schwerkraft zog alles Material in seiner Umgebung an und wirbelt den Asteroidengürtel bis heute durcheinander; Vesta und Ceres konnten nicht weiter wachsen. „Beide Körper sind somit Fossilien aus der Geburtsstunde des Sonnensystems und werfen Licht auf dessen Entstehung“, sagt die stellvertretende wissenschaftliche Missionsleiterin Carol Raymond vom Jet Propulsion Laboratory (JPL) der NASA.

Bereits seit Januar dieses Jahres liefert Dawn Bilder des Zwergplaneten, die in ihrer Auflösung alle bisherigen Aufnahmen übertreffen. Die Raumsonde ist ausgestattet mit einem wissenschaftlichen Kamerasystem, das unter Leitung des Göttinger Max-Planck-Instituts für Sonnensystemforschung entwickelt wurde und von dort betrieben wird.

Neben Kratern, von denen sich auffällig viele mit einem imposanten Zentralberg schmücken, finden sich auf Ceres‘ Oberfläche vereinzelte helle Flecken. „Strukturen dieser Art kennen wir von keinem anderen Körper im Asteroidengürtel“, sagt Andreas Nathues vom Max-Planck-Institut, wissenschaftlicher Leiter des Kamerateams. Da diese Bereiche mehr als 40 Prozent des einfallenden Lichts reflektieren, vermuten die Forscher, dass sie gefrorenes Wasser oder Salze enthalten.

Anfang vergangenen Jahres hatte das Weltraumteleskop Herschel tatsächlich Wasserdampf in der Umgebung von Ceres entdeckt. Einige Wissenschaftler meinen deshalb, dass der Zwergplanet Wasser aus seinem Innern ins All emittiert. In den nächsten Wochen wollen die Max-Planck-Forscher die Flecken genau beobachten und kontrollieren, ob sie sich möglicherweise im Laufe der Zeit verändern. Dies könnte ein Anzeichen für Aktivität sein.

Die Dawn Mission wird vom Jet Propulsion Laboratory (JPL) der amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Andreas Nathues
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-433

E-Mail: Nathues@mps.mpg.de

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/9003517/dawn-ceres-ueberwachung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnelle Wasserbildung in diffusen interstellaren Wolken
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schnelle Wasserbildung in diffusen interstellaren Wolken

25.06.2018 | Physik Astronomie

Gleisgenaue Positionsbestimmung für automatisierte Bahnanwendungen

25.06.2018 | Informationstechnologie

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics