Röntgenteleskop soll Dunkle Energie im All aufspüren

Er soll dabei sein, wenn 2012 eine Sojus-2-Rakete ein Röntgenteleskop in den Weltraum trägt, um die Natur der Dunklen Energie der Universums zu entschlüsseln: ein vom Max-Planck-Institut für extraterrestrische Physik entwickelter Röntgendetektor.

Seine anspruchsvolle Aufgabe ist es, die schwache Röntgenstrahlung von Himmelskörpern zu erfassen, ohne sich vom sichtbaren und UV-Licht von Milliarden Sternen stören zu lassen. Sehr empfindlich soll der Detektor im Wellenlängenbereich von unter einem bis zu etwa 50 nm sein, während er gleichzeitig im anschließenden Bereich bis zu mehreren hundert Nanometern praktisch blind sein muss.

Wissenschaftlern der Physikalisch-Technischen Bundesanstalt (PTB) ist es nun weltweit erstmals gelungen, die spektrale Empfindlichkeit in eben diesem Bereich genau zu charakterisieren. Dies war nur möglich, weil der PTB zwei Elektronen-Speicherringe zur Verfügung stehen, die gemeinsam dafür sorgen, dass alle benötigten Spektralbereiche in hoher Qualität zur Verfügung stehen.

Die so genannte Dunkle Energie sorgt dafür, dass sich das Universum beständig und vermutlich mit steigender Geschwindigkeit ausdehnt. Welcher Art diese „Energie“ ist, wollen Astronomen und Physiker im Rahmen des eRosita-Projekts herausfinden, indem sie mit einem Bündel von sieben Röntgenteleskopen die Verteilung von etwa 100 000 Galaxienhaufen und von Millionen Schwarzer Löcher im Weltraum untersuchen. Dass der dafür entwickelte Röntgendetektor seiner Aufgabe auch gerecht werden kann, haben Wissenschaftler der PTB mithilfe zweier Elektronenspeicherringe nachgewiesen:

Mit der PTB-eigenen Metrology Light Source wurde in erster Linie die Abschirmung von störendem UV- und sichtbarem Licht überprüft, während im PTB-Labor bei BESSY II in Berlin-Adlershof die Empfindlichkeit des Detektors im Bereich weicher Röntgenstrahlung ermittelt wurde.

Bei dem Detektor handelt es sich um einen von der Rückseite beleuchteten, 450 Mikrometer dicken pn-CCD-Chip, der sich durch Langzeitstabilität und eine hohe Lichtempfindlichkeit auszeichnet. Der Detektor hat einen ultradünnen pn-Übergang als Strahlungseintrittsfenster, um vor allem niedrige Röntgenenergien nachweisen zu können. Ein direkt auf dem Chip angebrachter Filter unterdrückt die störende Strahlung im sichtbaren und UV-Bereich.

An eRosita sind unter Federführung des Max-Planck-Instituts für extraterrestrische Physik mehrere Forschungseinrichtungen und Unternehmen beteiligt. Finanziert wird das Projekt vom Deutschen Forschungszentrum für Luft- und Raumfahrt (DLR).

Ansprechpartner:
Michael Krumrey, Röntgenradiometrie, Arbeitsgruppe 7.11, Tel.: (030) 6392-5085, E-Mail: michael.krumrey@ptb.de

Frank Scholze, EUV-Radiometrie, Arbeitsgruppe 7.22, Tel.: (030) 6392-5094, E-Mail: frank.scholze@ptb.de

Informationen zu eRosita
eRosita steht für Roentgen Survey with an Imaging Telescope Array
Webseite des Max-Planck-Instituts für extraterrestrische Physik
http://www.mpe.mpg.de/projects-d.html

Media Contact

Imke Frischmuth idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer