Physiker der Universität Göttingen entwickeln Röntgen-Lichtleiter mit großen Ablenkungswinkeln
Röntgenstrahlen besitzen eine nur geringe Wechselwirkung mit der sie umgebenden Materie. Sie durchdringen die meisten Grenzflächen und Körper ohne nennenswerte Abweichung von ihrem geraden Weg.
(a) Gemessene Intensitätsverteilung in Falschfarbendarstellung entlang der Ablenkrichtung.
Rot/pink entspricht etwa 1.000.000 Photonen pro Detektorpixel, blau/gelb etwa 20-100 Photonen.
(b) Geometrie des Experimentes, bei dem ein miniaturisierter Kanal in einer Metallschicht als Röntgenlichtleiter wirkt. Der Strahl breitet sich entlang des gekrümmten Kanals aus und kann so in seiner Richtung verändert werden. Die Kanalbreite beträgt 1/10.000 Millimeter.
(c) Computersimulation der Strahlausbreitung im Kanal mit charakteristischer Modenstruktur.
Grafik: Tim Salditt, Universität Göttingen / A. Rehfeldt, az-design
Gleichzeitig fehlen aber auch geeignete Mittel, um einen Röntgenstrahl auch auf krumme Wege zu leiten, beispielsweise damit er sich in eine andere Richtung ausbreitet, oder um den Strahl zu einer bestimmten Stelle zu transportieren. Forscher am Institut für Röntgenphysik der Universität Göttingen haben nun gezeigt, dass sich auch Röntgenlicht durch gekrümmte Richtlichtleiter „um die Ecke“ führen lässt.
Die Ergebnisse sind in der Fachzeitschrift Physical Review Letters erschienen.
Bislang gingen Forscher davon aus, dass ein sogenannter kritischer Winkel mit materialabhängigen Werten im Bereich von wenigen hundertstel Grad die möglichen Ablenkungswinkel begrenzt. „In unserem Experiment mit hochbrillanter Röntgenstrahlung am Hamburger Elektronensynchrotron (DESY) und der Europäischen Synchrotronstrahlungsquelle in Grenoble konnten wir das Röntgenlicht in einem fünf Millimeter langen Lichtleiter mit Ablenkungswinkeln von bis zu 30 Grad ,transportieren‘, weit mehr, als man für viele neue Anwendungen bräuchte“, erklärt Prof. Dr. Tim Salditt vom Institut für Röntgenphysik der Universität Göttingen.
Ohne Lichtleiter kommen viele Anwendungen heute besonders in der medizinischen Bildgebung und für industrielle Prüfverfahren nicht mehr aus: ob Endoskopie in der Medizin, interferometrische Vermessung von Objekten, Telekommunikation oder quantenoptische Grundlagenexperimente.
„Unsere Röntgen-Lichtleiter bestehen aus winzigen, luftgefüllten Kanälen in einer Metallschicht, die auf einem Siliziumchip aufgebracht wurde“, so Prof. Salditt. „Die Röntgenstrahlung wurde dabei in die offene Stirnseite der Kanäle eingekoppelt und breitete sich entlang der auf Kreislinien angeordneten Kanäle aus. Die Funktionsweise dieser Wellenleiter beruht auf der speziellen Anpassung des Lichtes auf die gekrümmte Kanalform.“
So gehen die Autoren davon aus, dass man mit solchen Kanälen in Zukunft kurze Röntgenpulse teilen und wieder zusammenführen könnte, um zum Beispiel die Pulsdauer von Röntgenlasern zu vermessen, deren Blitze kürzer als eine Billionstel Sekunde leuchten. Auch holografische Röntgenabbildungen mit mehreren Teilstrahlen ließen sich durch Nutzung dieser Lichtleiter realisieren.
Originalveröffentlichung: Tim Salditt et al. X-ray optics on a chip: Guiding x rays in curved channels. Physical Review Letters. http://dx.doi.org/10.1103/PhysRevLett.115.203902.
Kontaktadresse:
Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9427 / -5556 (Sekretariat)
E-Mail: tsaldit@gwdg.de
Internet: http://www.roentgen.physik.uni-goettingen.de
http://www.uni-goettingen.de/de/3240.html?cid=5332 Fotos zum Thema
Thomas Richter | idw - Informationsdienst Wissenschaft
Weitere Berichte zu: > Georg-August-Universität > Körper > Lichtleiter > Metallschicht > Röntgenlicht > Röntgenphysik > Röntgenstrahlung > Strahl > Synchrotronstrahlungsquelle > Winkel
Hochgeladenes Ion bahnt den Weg zu neuer Physik
11.12.2019 | Max-Planck-Institut für Kernphysik
Vom Staubkorn zum Planeten – Rätsel um Kollisionsbarriere gelöst
11.12.2019 | Universität Duisburg-Essen
More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?
It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...
In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.
Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...
In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.
Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...
The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.
Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...
Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.
Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...
Anzeige
Anzeige
Analyse internationaler Finanzmärkte
10.12.2019 | Veranstaltungen
QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Veranstaltungen
03.12.2019 | Veranstaltungen
Neue Hefe-Spezies in Braunschweig entdeckt
12.12.2019 | Biowissenschaften Chemie
Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung
12.12.2019 | Medizin Gesundheit
Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Biowissenschaften Chemie