Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblick enthüllt innere Struktur von urzeitlichem Magma-Ozean

07.11.2013
Mit der brillantesten Röntgenquelle der Welt haben Forscher erstmals einen Blick ins Innere von geschmolzenem Magma unter den Bedingungen des tiefen Erdmantels geworfen.

Die Untersuchung an DESYs Forschungslichtquelle PETRA III enthüllt, dass geschmolzener Basalt unter hohem Druck, wie er im Erdmantel herrscht, seine Struktur verändert.


Eine nur einen Millimeterbruchteil kleine Basaltprobe, die an drei Stellen vom Laser aufgeschmolzen und dann per Röntgenstreuung untersucht worden ist.

Chrystèle Sanloup, University of Edinburgh


Schematischer Versuchsaufbau: Starke Infrarot-Laser (IR) schmelzen das Basaltscheibchen in der Diamantstempelzelle (DAC), der helle Röntgenstrahl (X-ray) erzeugt ein Streubild (ganz links).

Wolfgang Morgenroth, Goethe-Universität Frankfurt

Bei Drücken von bis zu 60 Gigapascal, das entspricht einer Tiefe von 1400 Kilometern unter der Erde, geht das Magma in einen steiferen und dichteren Zustand über, wie die Wissenschaftler um Hauptautorin Chrystèle Sanloup von der Universität Edinburgh im britischen Fachjournal "Nature" berichten.

Die Ergebnisse stützen die Vorstellung, dass der Mantel der jungen Erde einst zwei unterirdische Magma-Ozeane beherbergt hat, die von einer festen Schicht getrennt wurden. Heute sind diese urzeitlichen Magma-Ozeane kristallisiert, aber geschmolzenes Magma existiert noch in lokalen Taschen und möglicherweise in dünnen Schichten im Mantel.

"Silikat-Flüssigkeiten wie basaltisches Magma spielen eine Schlüsselrolle in allen Evolutionsphasen der inneren Erde, von der Kern- und Krustenbildung vor Milliarden von Jahren bis zu vulkanischer Aktivität heute", betont Sanloup. Um das Verhalten von Magma im tiefen Erdmantel zu untersuchen, haben die Forscher kleine Basaltproben in einer Diamantstempelzelle mit bis zu dem 600.000-Fachen des normalen Atmosphärendrucks zusammengepresst.

"Aber um basaltisches Magma zu untersuchen, wie es auch heute im Erdmantel in lokalen Taschen vorkommt, mussten wir die Probe erst einmal aufschmelzen", erläutert Ko-Autorin Zuzana Konôpková von DESY, die die Experimente an DESYs Extreme Conditions Beamline (ECB; Messstation für extreme Zustände) P02 bei PETRA III unterstützt hat.

Die Gruppe nutzte zwei starke Infrarotlaser, die jeweils eine Leistung von 40 Watt auf eine Fläche von nur 20 Mikrometern (tausendstel Millimetern) Durchmesser konzentrieren. Zum Vergleich: Das ist eine rund 2000 Mal höhere Leistungsdichte als die Sonne auf ihrer Oberfläche besitzt. Dank einer geschickten Anordnung der Laseroptik konnten die Forscher die Heizlaser direkt durch die Diamanten auf die Probe schießen und diese in der Stempelpresse in wenigen Sekunden auf bis zu 3000 Grad Celsius aufheizen.

Um eine Überhitzung der Diamantstempelzelle und damit verzerrte Messungen zu vermeiden, wurden die Heizlaser lediglich für einige Sekunden kurz vor und während der Untersuchung mit dem Röntgenstrahl auf die Probe geleitet. Ausreichend kurze Untersuchungszeiten, die für diese Art Schmelzexperimente von zentraler Bedeutung sind, werden erst durch die enorme Helligkeit des Röntgenlichts in der ECB-Messstation möglich, wie Konôpková betont. "Zum ersten Mal konnten wir Strukturänderungen in geschmolzenem Magma über einen so weiten Druckbereich untersuchen."

Das intensive Röntgenlicht zeigt, dass die sogenannte Koordinationszahl von Silizium, dem häufigsten chemischen Element in Magmen, unter hohem Druck in der Schmelze von 4 auf 6 steigt. Das bedeutet, dass die Siliziumionen sich so neu anordnen, dass jedes von ihnen sechs nächste Sauerstoff-Nachbarn hat statt der üblichen vier unter niedrigem Druck. In der Folge steigt die Dichte des flüssigen Basalts von etwa 2,7 Gramm pro Kubikzentimeter bei niedrigem Druck auf knapp 5 Gramm pro Kubikzentimeter bei 60 Gigapascal.

"Eine wichtige Frage lautete, wie diese Änderung der Koordinationszahl in der Schmelze abläuft, und wie dies die physikalischen und chemischen Eigenschaften beeinflusst", erläutert Sanloup. "Die Ergebnisse zeigen, dass sich die Koordinationszahl in Magmen nach und nach zwischen 10 und 35 Gigapascal ändert. Wenn sie abgeschlossen ist, sind die Magmen viel steifer und lassen sich viel weniger zusammendrücken." Bei festem Silikat steigt die Koordinationszahl dagegen sprunghaft bei etwa 25 Gigapascal, wodurch die Grenze zwischen oberem und unterem Erdmantel definiert ist.

Diese Eigenschaft der Magmen lässt es möglich erscheinen, dass in der jungen Erde mehrere Magma-Ozeane in Schichten existiert haben können. "Unter niedrigem Druck lassen sich Magmen viel leichter zusammenpressen als ihre kristallinen Pendants, während sie oberhalb von 35 Gigapascal fast genauso steif sind", betont Sanloup. "Das legt nahe, dass Magmen in der frühen Geschichte der Erde, als sie zu kristallisieren begann, am Boden des oberen und des unteren Erdmantels negativen Auftrieb besessen haben könnten. Das könnte zur Existenz von zwei Magma-Ozeanen mit einer kristallinen Trennschicht geführt haben, wie andere Forscher früher bereits vorgeschlagen haben."

Unter dem hohen Druck des unteren Erdmantels steigt die Dichte des Magmas demnach so weit, bis Gestein schließlich nicht mehr einsinkt, sondern auf dieser Schicht schwimmt. Auf diese Weise könnte sich eine kristalline Grenzschicht zwischen einem unteren und einem oberen Magma-Ozean in der jungen Erde gebildet haben.

Eine Schichtung mehrerer Magma-Ozeane wurde postuliert, um Abschätzungen für die Dauer der Magma-Ozean-Ära mit Modellrechnungen zur Abkühlung solcher Magma-Ozeane in Einklang zu bringen. Denn während geochronologische Abschätzungen ergeben, dass die Magma-Ozean-Ära einige Dutzend Millionen Jahre gedauert haben muss, zeigen die Modellrechnungen, dass ein einzelner Magma-Ozean viel schneller in nur etwa einer Million Jahre ausgekühlt wäre. Eine kristalline Schicht würde auch als Wärmeisolation wirken und könnte das Auskühlen entsprechend bremsen. Die noch heute seismologisch nachweisbaren isolierten Taschen mit Gesteinsschmelze oberhalb vom Erdkern könnten Überbleibsel eines tiefen Magma-Ozeans sein.

Dem Autorenteam gehören Forscher von DESY und den Universitäten Edinburgh, Amsterdam und Frankfurt am Main sowie von der Université Pierre et Marie Curie in Paris an.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalarbeit: Structural change in molten basalt at deep mantle conditions; Chrystèle Sanloup, James W. E. Drewitt, Zuzana Konôpková, Philip Dalladay-Simpson, Donna M. Morton, Nachiketa Rai, Wim van Westrenen & Wolfgang Morgenroth; Nature, 2013; DOI: 10.1038/nature12668

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics