Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesen am Schalenabschluss?

09.02.2016

Calcium-Isotope sind immer noch für eine Überraschung gut: Nachdem vor kurzem die Isotope mit den Massenzahlen 52 und 54 als weitere "magische" und damit relativ stabile Kerne etabliert wurden, passen die Ergebnisse jüngster laserspektroskopischer Untersuchungen an Ca-52 nicht recht in dieses Bild. Physiker haben an ISOLDE/CERN die Ladungsradien von Ca-49 bis Ca-52 gemessen und ein unerwartet rasches und ungebremstes Wachstum entlang dieser Isotopenkette gefunden. Wie sie in Nature Physics berichten, kann keine der bestehenden Kernstrukturtheorien das Ausmaß dieses Anschwellens erklären.

Vor mehr als 50 Jahren wurde das Schalenmodell der Atomkerne von Maria Göppert-Meyer und Hans Jensen entwickelt und war seitdem ausgesprochen erfolgreich. Ähnlich wie die Edelgase, die eine abgeschlossene gefüllte Elektronenschale besitzen und deshalb chemisch inert sind, gibt es auch bei Atomkernen Schalenabschlüsse, die sich durch eine besondere Stabilität ausweisen.


Die „doppelt magischen“ Ca-Isotope mit den Massenzahlen 40 (Ca-40) und 48 (Ca-48) besitzen gleich große Kernladungsradien. Die Messung des Isotops Ca-52 ergab einen ungewöhnlich großen Ladungsradius.

TUD

Diese Schalenabschlüsse treten bei den sogenannten „magischen“ Zahlen für die Anzahl der Protonen und Neutronen im Kern auf. Aus der Untersuchung stabiler Kerne ergaben sich diese zu 2, 8, 20, 28, 50, 82 und 126. Wenn sowohl die Protonenzahl als auch die Neutronenzahl magisch sind, spricht man von doppelt magischen Kernen.

Die Calciumisotope sind insoweit einmalig, als sich darunter zwei stabile doppelt magische Kerne befinden – das häufigste Isotop Ca-40 und das viel seltenere Isotop Ca-48. Jüngere Resultate von unterschiedlichen kernphysikalischen Experimenten, u.a. Massenmessungen, an den kurzlebigen Isotopen bis Ca-54 legten den Schluss nahe, dass bei Calcium auch die Neutronenzahlen 32 und 34 magisch sein könnten.

Dies steht im Einklang mit theoretischen Rechnungen, die die zugehörigen Bindungs- und Anregungsenergien mit guter Genauigkeit vorhersagen bzw. reproduzieren konnten. Calcium wäre damit das erste Element, bei dem man vier doppelt magische Kerne kennen würde. Ein weiteres Indiz für einen Schalenabschluss könnten die Kernladungsradien der Isotope liefern, welche die Größe der Ladungsverteilung, die von den positiv geladenen Protonen herrührt, widerspiegeln.

Diese Größe kann mittels Laserspektroskopie bestimmt werden, denn die Elektronen der Hülle besitzen eine sehr kleine aber endliche Wahrscheinlichkeit, sich im Atomkern zu tummeln. Während dieser Zeit „ertasten“ sie die Protonenverteilung. Ihre Bindungsenergie verändert sich geringfügig, wenn sich die Ladungsverteilung aufgrund der sich ändernden Zahl von Neutronen vergrößert oder verkleinert. Da die Effekte winzig sind, muss eine sehr genaue Methode verwendet werden, die in der Lage ist diese Variationen zu messen.

Die kollineare Laserspektroskopie bietet diese Genauigkeit und wurde bereits früher für die Spektroskopie der leichteren Calciumisotope eingesetzt. Bei dieser Technik wird der Ionenstrahl des zu untersuchenden Isotops mit einem Laserstrahl überlagert. Wenn die Wellenlänge und damit die Farbe des Lasers nicht exakt an die Bindungsenergien der Elektronen im entsprechenden Isotop angepasst ist, kann das Laserlicht nicht mit den Ionen in Wechselwirkung treten und die Detektoren, die von der Seite auf den Ionenstrahl gerichtet sind, liefern keine Signale.

Der zu messende Effekt der Ladungsverteilung bewirkt für das Isotop Ca-52 gegenüber dem stabilen Isotop Ca-40 eine Änderung von etwa 2x10^–7 in der Wellenlänge. Dies entspricht einer Variation des Abstandes Erde-Mond um etwa 70 m. Besitzt das Laserlicht hingegen die richtige Wellenlänge, so absorbieren die Ionen das Licht. Die dabei aufgenommene Energie müssen sie innerhalb einiger Nanosekunden (1 ns ist eine milliardstel Sekunde) wieder loswerden. Dies tun sie, indem sie wiederum Licht aussenden. Dieses geschieht nun aber auch in Richtung der Detektoren und diese registrieren ein Signal.

An der Isotopenfabrik ISOLDE am CERN können die schwereren radioaktiven Calciumisotope erzeugt, gesammelt und als kurzes Ionenpaket zu verschiedenen Experimenten, unter ihnen auch das COLLAPS-Experiment zur kollinearen Laserspektroskopie, geleitet werden. Obwohl die Pakete von Ca-52 nur einige wenige Ionen beinhalten und diese wiederum die Detektoren innerhalb weniger Mikrosekunden passieren, erzeugen sie ein ausreichendes Signal, um im Experiment beobachtet zu werden und die Ladungsradien präzise zu bestimmen.

Die COLLAPS-Messungen erreichten eine Genauigkeit, die im obigen Beispiel einer Bestimmung der Variation des Abstandes Erde-Mond um 2 m entspricht. Dabei ergab sich ein starkes Anwachsen der Ladungsradien bei den Isotopen jenseits von Ca-48. Dass der Ladungsradius von Ca-48 zu Ca-50 stark ansteigt, war bereits in früheren Messungen in den neunziger Jahren festgestellt worden.

Jetzt stellte sich aber heraus, dass sich dieser rasche Anstieg praktisch ungebremst bis zu Ca-52 hin fortsetzt, und selbst bei diesem als magisch angesehenen Isotop – entgegen den Erwartungen der stärkeren Bindung – der Ladungsradius weiterhin zunimmt. Den experimentellen Messungen werden bestehende und neue, modernste Vielteilchenrechnungen gegenübergestellt.

Es zeigt sich, dass keine der Theorien die große Zunahme erklären kann und deutet darauf hin, dass eine Anpassung der Kernkräfte notwendig ist, um den unerwartet großen Ladungsradius von Ca-52 zu beschreiben. Die Calciumisotope bleiben damit in der Kernphysik ein äußerst spannendes Forschungsfeld.

Die in Nature Physics erschienenen Ergebnisse basieren auf einer Zusammenarbeit der COLLAPS Kollaboration an ISOLDE/CERN, bestehend u.a. aus Wissenschaftlerinnen und Wissenschaftlern vom Max-Planck-Institut für Kernphysik, Heidelberg, und der Technischen Universität Darmstadt, mit theoretischen Gruppen der Technischen Universität Darmstadt und in den USA.

Originalpublikation:
Unexpectedly large charge radii of neutron-rich calcium isotopes, R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A.Wendt and D. T. Yordanov, Nature Physics 12, online 08.02.2016, DOI: 10.1038/nphys3645 http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3645.html

Gemeinsame Meldung des Max-Planck-Instituts für Kernphysik und der Technischen Universität Darmstadt

Kontakt:
Prof. Dr. Klaus Blaum, MPI für Kernphysik
Tel.: 06221 516850
klaus.blaum@mpi-hd.mpg.de

Prof. Achim Schwenk, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-64235
schwenk@physik.tu-darmstadt.de

Prof. Dr. Wilfried Nörtershäuser, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-23575
wnoertershaeuser@ikp.tu-darmstadt.de

Weitere Informationen:

https://www.mpg.de/7326075/masse_calcium_isotop - Pingpong mit schweren Calcium-Ionen (Pressemeldung der MPG)
https://www.tu-darmstadt.de/vorbeischauen/aktuell/archiv_2/2013_1/einzelansicht_... - Was die Welt im Innersten zusammen hält - Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht (Pressemeldung der TUD)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blick auf die Erde vor der Sonne
19.06.2019 | Georg-August-Universität Göttingen

nachricht Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen
18.06.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics