Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesen am Schalenabschluss?

09.02.2016

Calcium-Isotope sind immer noch für eine Überraschung gut: Nachdem vor kurzem die Isotope mit den Massenzahlen 52 und 54 als weitere "magische" und damit relativ stabile Kerne etabliert wurden, passen die Ergebnisse jüngster laserspektroskopischer Untersuchungen an Ca-52 nicht recht in dieses Bild. Physiker haben an ISOLDE/CERN die Ladungsradien von Ca-49 bis Ca-52 gemessen und ein unerwartet rasches und ungebremstes Wachstum entlang dieser Isotopenkette gefunden. Wie sie in Nature Physics berichten, kann keine der bestehenden Kernstrukturtheorien das Ausmaß dieses Anschwellens erklären.

Vor mehr als 50 Jahren wurde das Schalenmodell der Atomkerne von Maria Göppert-Meyer und Hans Jensen entwickelt und war seitdem ausgesprochen erfolgreich. Ähnlich wie die Edelgase, die eine abgeschlossene gefüllte Elektronenschale besitzen und deshalb chemisch inert sind, gibt es auch bei Atomkernen Schalenabschlüsse, die sich durch eine besondere Stabilität ausweisen.


Die „doppelt magischen“ Ca-Isotope mit den Massenzahlen 40 (Ca-40) und 48 (Ca-48) besitzen gleich große Kernladungsradien. Die Messung des Isotops Ca-52 ergab einen ungewöhnlich großen Ladungsradius.

TUD

Diese Schalenabschlüsse treten bei den sogenannten „magischen“ Zahlen für die Anzahl der Protonen und Neutronen im Kern auf. Aus der Untersuchung stabiler Kerne ergaben sich diese zu 2, 8, 20, 28, 50, 82 und 126. Wenn sowohl die Protonenzahl als auch die Neutronenzahl magisch sind, spricht man von doppelt magischen Kernen.

Die Calciumisotope sind insoweit einmalig, als sich darunter zwei stabile doppelt magische Kerne befinden – das häufigste Isotop Ca-40 und das viel seltenere Isotop Ca-48. Jüngere Resultate von unterschiedlichen kernphysikalischen Experimenten, u.a. Massenmessungen, an den kurzlebigen Isotopen bis Ca-54 legten den Schluss nahe, dass bei Calcium auch die Neutronenzahlen 32 und 34 magisch sein könnten.

Dies steht im Einklang mit theoretischen Rechnungen, die die zugehörigen Bindungs- und Anregungsenergien mit guter Genauigkeit vorhersagen bzw. reproduzieren konnten. Calcium wäre damit das erste Element, bei dem man vier doppelt magische Kerne kennen würde. Ein weiteres Indiz für einen Schalenabschluss könnten die Kernladungsradien der Isotope liefern, welche die Größe der Ladungsverteilung, die von den positiv geladenen Protonen herrührt, widerspiegeln.

Diese Größe kann mittels Laserspektroskopie bestimmt werden, denn die Elektronen der Hülle besitzen eine sehr kleine aber endliche Wahrscheinlichkeit, sich im Atomkern zu tummeln. Während dieser Zeit „ertasten“ sie die Protonenverteilung. Ihre Bindungsenergie verändert sich geringfügig, wenn sich die Ladungsverteilung aufgrund der sich ändernden Zahl von Neutronen vergrößert oder verkleinert. Da die Effekte winzig sind, muss eine sehr genaue Methode verwendet werden, die in der Lage ist diese Variationen zu messen.

Die kollineare Laserspektroskopie bietet diese Genauigkeit und wurde bereits früher für die Spektroskopie der leichteren Calciumisotope eingesetzt. Bei dieser Technik wird der Ionenstrahl des zu untersuchenden Isotops mit einem Laserstrahl überlagert. Wenn die Wellenlänge und damit die Farbe des Lasers nicht exakt an die Bindungsenergien der Elektronen im entsprechenden Isotop angepasst ist, kann das Laserlicht nicht mit den Ionen in Wechselwirkung treten und die Detektoren, die von der Seite auf den Ionenstrahl gerichtet sind, liefern keine Signale.

Der zu messende Effekt der Ladungsverteilung bewirkt für das Isotop Ca-52 gegenüber dem stabilen Isotop Ca-40 eine Änderung von etwa 2x10^–7 in der Wellenlänge. Dies entspricht einer Variation des Abstandes Erde-Mond um etwa 70 m. Besitzt das Laserlicht hingegen die richtige Wellenlänge, so absorbieren die Ionen das Licht. Die dabei aufgenommene Energie müssen sie innerhalb einiger Nanosekunden (1 ns ist eine milliardstel Sekunde) wieder loswerden. Dies tun sie, indem sie wiederum Licht aussenden. Dieses geschieht nun aber auch in Richtung der Detektoren und diese registrieren ein Signal.

An der Isotopenfabrik ISOLDE am CERN können die schwereren radioaktiven Calciumisotope erzeugt, gesammelt und als kurzes Ionenpaket zu verschiedenen Experimenten, unter ihnen auch das COLLAPS-Experiment zur kollinearen Laserspektroskopie, geleitet werden. Obwohl die Pakete von Ca-52 nur einige wenige Ionen beinhalten und diese wiederum die Detektoren innerhalb weniger Mikrosekunden passieren, erzeugen sie ein ausreichendes Signal, um im Experiment beobachtet zu werden und die Ladungsradien präzise zu bestimmen.

Die COLLAPS-Messungen erreichten eine Genauigkeit, die im obigen Beispiel einer Bestimmung der Variation des Abstandes Erde-Mond um 2 m entspricht. Dabei ergab sich ein starkes Anwachsen der Ladungsradien bei den Isotopen jenseits von Ca-48. Dass der Ladungsradius von Ca-48 zu Ca-50 stark ansteigt, war bereits in früheren Messungen in den neunziger Jahren festgestellt worden.

Jetzt stellte sich aber heraus, dass sich dieser rasche Anstieg praktisch ungebremst bis zu Ca-52 hin fortsetzt, und selbst bei diesem als magisch angesehenen Isotop – entgegen den Erwartungen der stärkeren Bindung – der Ladungsradius weiterhin zunimmt. Den experimentellen Messungen werden bestehende und neue, modernste Vielteilchenrechnungen gegenübergestellt.

Es zeigt sich, dass keine der Theorien die große Zunahme erklären kann und deutet darauf hin, dass eine Anpassung der Kernkräfte notwendig ist, um den unerwartet großen Ladungsradius von Ca-52 zu beschreiben. Die Calciumisotope bleiben damit in der Kernphysik ein äußerst spannendes Forschungsfeld.

Die in Nature Physics erschienenen Ergebnisse basieren auf einer Zusammenarbeit der COLLAPS Kollaboration an ISOLDE/CERN, bestehend u.a. aus Wissenschaftlerinnen und Wissenschaftlern vom Max-Planck-Institut für Kernphysik, Heidelberg, und der Technischen Universität Darmstadt, mit theoretischen Gruppen der Technischen Universität Darmstadt und in den USA.

Originalpublikation:
Unexpectedly large charge radii of neutron-rich calcium isotopes, R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A.Wendt and D. T. Yordanov, Nature Physics 12, online 08.02.2016, DOI: 10.1038/nphys3645 http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3645.html

Gemeinsame Meldung des Max-Planck-Instituts für Kernphysik und der Technischen Universität Darmstadt

Kontakt:
Prof. Dr. Klaus Blaum, MPI für Kernphysik
Tel.: 06221 516850
klaus.blaum@mpi-hd.mpg.de

Prof. Achim Schwenk, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-64235
schwenk@physik.tu-darmstadt.de

Prof. Dr. Wilfried Nörtershäuser, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-23575
wnoertershaeuser@ikp.tu-darmstadt.de

Weitere Informationen:

https://www.mpg.de/7326075/masse_calcium_isotop - Pingpong mit schweren Calcium-Ionen (Pressemeldung der MPG)
https://www.tu-darmstadt.de/vorbeischauen/aktuell/archiv_2/2013_1/einzelansicht_... - Was die Welt im Innersten zusammen hält - Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht (Pressemeldung der TUD)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics