Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Richtungsweisende Molekülachse unter Elektronenbeschuss

24.09.2012
Forscher am MPI für Kernphysik konnten erstmals eine starke Abhängigkeit der Elektronenstoßionisation von Wasserstoffmolekülen von deren räumlicher Ausrichtung beobachten.
Die Ausrichtung der gasförmig vorliegenden Moleküle wurde nach dem Stoß anhand der Flugrichtung molekularer Bruchstücke bestimmt. Offenbar wird das aus dem Molekül herausgeschlagene Elektron durch die positiven Atomkerne stark abgelenkt und vorzugsweise entlang der Molekülachse emittiert. (Phys. Rev. Lett., 19.09.2012 online)

Auf welche Weise Atome und Moleküle im Stoß mit Elektronen ionisiert werden hat wichtige Konsequenzen für das Verhalten von vielen physikalischen Systemen, von Gasentladungen in Lampen und Lasern bis zu astrophysikalischen Plasmen. Im Experiment kann man auf den genauen Ablauf von Stößen zwischen Elektronen und Molekülen durch die Messung der Impulse aller beteiligten Teilchen vor und nach dem Stoß schließen. Doch welchen Einfluss hat hier die räumliche Ausrichtung eines Gasmoleküls? Dies wurde bisher unter Physikern sogar beim molekularen Wasserstoff H2, dem einfachsten aller Moleküle, kontrovers diskutiert [1]. Die experimentelle Bestimmung der zufällig orientierten Achse eines Gasmoleküls ist jedoch schwierig.
Vor kurzem gelang dies Heidelberger Physikern bei der Ionisation von Wasserstoffmolekülen, indem sie molekulare Bruchstücke nachwiesen und aus deren Flugrichtung auf die räumliche Ausrichtung des anfänglich intakten Moleküls schlossen. Es zeigte sich jedoch, dass die Molekülachse bei den meisten Stößen keine große Rolle spielt. Dies liegt daran, dass sich die Elektronenhülle im Wasserstoffmolekül über einen, verglichen mit dem Kernabstand, sehr großen Raumbereich ausdehnt und fast kugelförmig ist.

In den jüngsten Experimenten gelang es den Forschern jedoch große Streuwinkel des Projektils zu beobachten, bei denen der Stoß mit dem molekularen Elektron sehr nahe an einem Atomkern stattfindet. Dabei werden die herausgeschlagenen Elektronen beim Verlassen des Moleküls durch die positiven Kerne stark abgelenkt und mit größerer Wahrscheinlichkeit entlang der Molekülachse emittiert. Dieser Effekt wird umso stärker, je langsamer das auslaufende Elektron ist. Mit dieser Messung konnte der Ursprung der Winkelverteilung der ionisierten Elektronen, die bisher nur an zufällig ausgerichteten Molekülen gemessenen wurde [2], erstmals aufgeklärt werden.

In Zukunft wird die hier entwickelte experimentelle Technik auch die Untersuchung größerer, auch biologisch relevanter Moleküle ermöglichen und damit zum Verständnis der Entstehung von Strahlenschäden in biologischem Gewebe beitragen.

[1] Al-Hagan et al., Nature Physics 5 , 59 (2009).

[2] A. Senftleben, O. Al-Hagan, T. Pflüger, X. Ren, D. Madison, A. Dorn and J. Ullrich, J. Chem. Phys. 133, 044302 (2010).

Originalveröffentlichung:
Strong Molecular Alignment Dependence of H2 Electron Impact Ionization Dynamics, X. Ren, T. Pflüger, S. Xu, J. Colgan, M. S. Pindzola, A. Senftleben, J. Ullrich and A. Dorn, Phys. Rev. Lett. 109, 123202 (2012).

Kontakt:
PD Dr. Alexander Dorn
Tel.: +49 6221 516-513
E-Mail: alexander.dorn at mpi-hd.mpg.de

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://prl.aps.org/abstract/PRL/v109/i12/e123202
http://www.mpi-hd.mpg.de/ullrich/page.php?id=37

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blauer Phosphor – jetzt erstmals vermessen und kartiert
15.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Materiezustände durch Licht verändern
12.10.2018 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Multiresistente Keime aus Abwasser filtern

16.10.2018 | Ökologie Umwelt- Naturschutz

Pilz schlägt sich mit eigenen Waffen

16.10.2018 | Biowissenschaften Chemie

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics