Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Relativität erschüttert einen Magneten

04.03.2014

Forscher der Johannes Gutenberg-Universität Mainz entwickeln neues Verfahren zur magnetischen Aufzeichnung / Veröffentlichung in Nature Nanotechnology

Die Forschungsgruppe von Univ.-Prof. Dr. Jairo Sinova am Institut für Physik der Johannes Gutenberg-Universität Mainz (JGU) hat in Zusammenarbeit mit Wissenschaftlern aus Prag, Cambridge und Nottingham ein neuartiges physikalisches Phänomen vorhergesagt und entdeckt, das es ermöglicht, den Zustand eines Magneten durch elektrische Impulse zu beeinflussen.


Elektrisch erschütterter GaMnAs-Magnet

(Abb./©: Jairo Sinova)

Die aktuellen Technologien zur Aufzeichnung, Speicherung und Wiedergabe von Informationen sind entweder ladungs- oder spinbasiert. Dabei stellen die auf der Halbleitertechnik basierenden Flash- oder Direktzugriffsspeicher Paradebeispiele aus der großen Vielfalt ladungsbasierter Geräte dar.

Diese Geräte nutzen die Möglichkeit, die aus den Werten „0“ und „1“ bestehenden elektronischen Ladezustände von Halbleitern auf einfache Weise elektrisch zu beeinflussen und zu erfassen. Der Nachteil hierbei liegt darin, dass bereits schwache Störeinflüsse wie Verunreinigungen, Temperaturschwankungen oder Strahlung zu unkontrollierten Ladungsumverteilungen und in der Folge zu Datenverlust führen können. Spinbasierte Verfahren arbeiten nach einem völlig anderen Prinzip.

Bei manchen Materialien, wie etwa Eisen, erzeugen die Elektronenspins Magnetismus, wodurch die Position des Nord- und Südpols am Magneten zur Speicherung der 0- und 1-Werte genutzt werden kann. Genau diese Technologie steckt hinter Speicheranwendungen, die von Kilobyte-Magnetstreifenkarten bis zu Terabyte-Computerfestplatten reichen. Da in diesen Medien die Speicherung spinbasiert erfolgt, sind sie weit weniger anfällig für Ladestörungen.

Der Nachteil der derzeit existierenden Magnetspeicher besteht allerdings darin, dass das magnetische Bit an einen Elektro- oder anderen Permanentmagneten gekoppelt sein muss, um Nord- und Südpol des Magneten miteinander zu vertauschen, um also von „0“ auf „1“ zu wechseln und umgekehrt.

Wenn die Pole aber nun durch ein elektrisches Signal ohne den Einsatz eines anderen Magneten vertauscht werden könnten, wäre der Weg frei für eine völlig neuartige Generation von Speichermedien, die die Vorzüge der ladungsbasierten und der spinbasierten Medien ineinander vereint.

oder anderen Permanentmagneten auf elektrischem Wege zu erschüttern, muss man den Bereich der klassischen Physik verlassen und sich in die relativistische Quantenmechanik hineinbegeben. In Einsteins Relativitätstheorie können Elektronen unter dem Einfluss elektrischen Stroms ihre Spins so ausrichten, dass sie magnetisch werden.

Die Mainzer Forscher verwendeten einen GaMnAs-Permanentmagneten, legten in dessen Innerem einen elektrischen Strom an und erzeugten so eine neue interne Magnetwolke, durch die der sie umgebende Permanentmagnet beeinflusst werden kann. Die Arbeit wurde in der Ausgabe der Zeitschrift Nature Nanotechnology vom 2. März 2014 veröffentlicht.

Das beobachtete Phänomen ist eng mit dem relativistischen intrinsischen Spin-Hall-Effekt verwandt, den Jörg Wunderlich, Jairo Sinova und Tomas Jungwirth im Jahr 2004 entdeckten, nachdem er von Sinova und Forscherkollegen 2003 vorhergesagt worden war. Seitdem lässt sich anhand dieses Phänomens lehrbuchmäßig erläutern, wie jedes Material durch elektrische Ströme magnetisiert werden kann. „Vor zehn Jahren haben wir vorhergesagt und entdeckt, wie elektrische Ströme durch die intrinsischen Strukturen von Materialien reine Spinströme erzeugen können.

Nun haben wir nachgewiesen, dass dieser Effekt umgekehrt werden kann, um Magnete mithilfe einer strominduzierten Polarisation zu beeinflussen“, erklärt Univ.-Prof. Dr. Jairo Sinova. „Diese neuartigen Phänomene bilden heute einen wichtigen Forschungsschwerpunkt, da sich daraus eine neue Generation von Speichermedien ergeben könnte. Neben unseren laufenden Kooperationen fügt sich diese Forschungsrichtung hervorragend in die aktuelle experimentelle Forschung an der Johannes Gutenberg-Universität Mainz ein. Es ist für mich ein großes Privileg, Teil dieser weltweit führenden Forschung zu sein und mit herausragenden Kollegen zusammenarbeiten zu dürfen. Ich bin schon jetzt ganz begeistert von den Möglichkeiten, die uns die Zukunft in diesem Bereich bietet.“

Veröffentlichung:
Kurebayashi, H., Sinova, J. et al.
An antidumping spin–orbit torque originating from the Berry curvature
Nature Nanotechnology, 2. März 2014
DOI: 10.1038/nnano.2014.15

Abbildung:
http://www.uni-mainz.de/bilder_presse/08_physik_GaMnAs_magnet.jpg
Elektrisch erschütterter GaMnAs-Magnet
(Quelle/©: Jairo Sinova)

Weitere Informationen:
Univ.-Prof. Dr. Jairo Sinova
Institut für Physik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel.: +49 6131 39-21284
E-Mail: sinova@uni-mainz.de
www.sinova-group.physik.uni-mainz.de/

Weitere Informationen:

http://www.uni-mainz.de/presse/59624.php - Pressemitteilung

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

nachricht Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?
16.07.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics