Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reisetauglicher Laser

22.01.2018

Die Physikalisch-Technische Bundesanstalt (PTB) hat eine Frequenzverdopplungseinheit für transportable Laser entwickelt

Die Physikalisch-Technische Bundesanstalt (PTB) ist in Deutschland für die Aussendung der gesetzlichen Zeit, etwa für Funkuhren, zuständig. Dazu betreibt sie einige der besten Cäsium-Atomuhren der Welt. Gleichzeitig werden hier schon mehrere Atomuhren der nächsten Generation entwickelt. Diese Uhren basieren nicht mehr auf einem Mikrowellenübergang in dem Element Cäsium, sondern auf anderen Atomen, die mit optischen Frequenzen angeregt werden. Einige dieser neuen Uhren sind sogar transportabel.


Die Laser-Aufbauten der optischen Aluminiumuhr, die am QUEST-Institut an der PTB entwickelt wird.

(Abb.: PTB)

Auch die optische Aluminium-Uhr, die am QUEST-Institut an der PTB entsteht, soll unter anderem dazu genutzt werden, außerhalb des Labors physikalische Phänomene wie die von Einstein vorhergesagte Rotverschiebung zu messen. Eine wesentliche Voraussetzung dafür ist, dass die notwendigen Laser dem Transport standhalten.

Daher haben PTB-Physiker eine Frequenzverdopplungseinheit entwickelt, die auch dann noch funktioniert, wenn sie mit dem Dreifachen der Erdbeschleunigung durchgeschüttelt wurde. Die Ergebnisse sind in der aktuellen Ausgabe von „Review of Scientific Instruments“ veröffentlicht.

Bereits Einstein fand heraus, dass zwei Uhren, die sich an unterschiedlichen Stellen im Schwerefeld der Erde befinden, unterschiedlich schnell ticken. Was sich zunächst nach einer Skurrilität anhört, hat ganz praktische Anwendungen: So lässt sich mit zwei optischen Atomuhren, die eine extrem kleine relative Messunsicherheit von 10–18 aufweisen, der Höhenunterschied zwischen beliebigen Punkten auf der Erde auf einen Zentimeter genau messen.

Dieses sogenannte „chronometrische Nivellement“ stellt eine wichtige Anwendung von Uhren in der Geodäsie dar. Eine der Voraussetzungen dafür ist, dass sich die optischen Frequenzen der beiden Uhren z. B. über Glasfasern vergleichen lassen.

An der PTB werden gleich mehrere Atomuhren unterschiedlichen Typs entwickelt, die sich jeweils in einem Anhänger bzw. Container transportieren lassen. Der Betrieb außerhalb eines geschützten Labors bringt jedoch viele Herausforderungen mit sich: So ist die Umgebungstemperatur natürlich viel weniger stabil. Und beim Transport auf der Straße kann es zu erheblichen Erschütterungen kommen.

Deshalb können optische Aufbauten, die im Labor tadellos funktioniert haben, am Zielort zunächst unbrauchbar sein. Sie müssen in mühevoller Kleinarbeit wieder einjustiert werden, wodurch wertvolle Forschungszeit verloren geht.

Das letzte Problem betrifft insbesondere die portable Aluminiumuhr, die am QUEST-Institut entwickelt wird. Für sie werden unter anderem zwei UV-Laser bei 267 nm benötigt. Für diese Wellenlänge lässt sich nicht einfach eine Laserdiode kaufen. Stattdessen muss jeweils ein langwelliger Infrarotlaser zweimal hintereinander frequenzverdoppelt werden. Hierbei wird das Licht in einem geschlossenen Ring aus vier Spiegeln eingekoppelt, sodass in ihm eine hohe optische Leistung zirkuliert.

Ein darin platzierter nichtlinearer Kristall wandelt das zirkulierende Licht in Licht der halben Wellenlänge um. Es verlässt dank der dichroitischen Beschichtung der Spiegel den Resonator und wird dann zur Abfrage der Uhr verwendet. Für diesen sogenannten Frequenz-Verdopplungsresonator wurde am QUEST-Institut ein Design entwickelt, das auf einem monolithischen und damit hochstabilen Rahmen basiert, an dem alle Spiegel und der Kristall befestigt sind. Nach außen ist der Aufbau gasdicht abschlossen, um den gegenüber kleinsten Verunreinigungen hochempfindlichen Kristall zu schützen.

Die Entwickler des Resonators konnten an einem Prototyp demonstrieren, dass sie auch dann Laserlicht frequenzverdoppelt, während sie Beschleunigungen von 1 g ausgesetzt ist. Zusätzlich wurde gezeigt, dass selbst eine 30-minütige Beschleunigungsphase mit bis zu 3 g die Effizienz der Frequenzverdopplung nicht beeinträchtigt. Das entspricht dem Fünffachen des Wertes, der in der Norm ISO13355:2016 für Straßentransporte auf Lastkraftwagen angegeben ist. Jedoch ist der Resonator nicht nur mechanisch robust, sondern genauso effizient wie vergleichbare Systeme von Forschungsgruppen anderer Institute. Zudem wurde ein ununterbrochener Dauerbetrieb von 130 Stunden demonstriert.

Angesichts dieser Eigenschaften wurden mehrere dieser Verdopplungsresonatoren für verschiedene (nicht nur UV-) Wellenlängen am QUEST-Institut zum festen Bestandteil unterschiedlicher quantenoptischer Experimente, um diese zuverlässig mit Laserlicht zu versorgen. Zudem hat eine deutsche Optomechanik-Firma das Design lizenziert, um es als Basis für ein kommerzielles Produkt zu nutzen. Das Projekt wurde unterstützt durch die Deutsche Forschungsgesellschaft (Förderung CRC 1128 geo-Q, Projekt A03, CRC 1227 DQ-mat, Projekte B03 und B05) und die Leibniz-Gemeinschaft (SAW-2013-FBH-3).
es/PTB

Ansprechpartner:
Prof. Dr. Piet O. Schmidt, QUEST, Telefon: (0531)592-4700, E-Mail: piet.schmidt@ptb.de

Die wissenschaftliche Veröffentlichung:
S. Hannig, J. Mielke, J. Fenske, M. Misera, N. Beef, C. Ospelkaus, P. O. Schmidt: A highly stable monolithic enhancement cavity for second harmonic generation in the ultraviolet.
Review of Scientific Instruments 89, 013106 (2018) - http://aip.scitation.org/journal/rsi

Zu der Veröffentlichung ist bei AIP auch ein sogenanntes „Scilight“ erschienen: http://scitation.aip.org/content/aip/journal/sci/2018/3/10.1063/1.5021479

Dipl.-Journ. Erika Schow | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kosmische Schlange
20.11.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics