Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

14.02.2019

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine selbst gegeben, sondern vielmehr durch deren Wechselwirkungen untereinander, welche durch ihre äußeren Elektronenhüllen bestimmt sind.


Änderung der Elektronenwolke eines einzelnen Moleküls durch Ladung.

Foto: Laerte Patera & Jascha Repp – Zur ausschließlichen Verwendung im Rahmen der Berichterstattung zu dieser Pressemitteilung.

Viele chemische Prozesse basieren auf dem sogenannten Elektronentransfer, dem Austausch von Elektronen zwischen Atomen und Molekülen.

Atome und Moleküle sind unvorstellbar klein, so dass die direkte Abbildung dieser elementaren Bausteine und deren Wechselwirkung für lange Zeit unmöglich schien.

Die Abbildung einzelner Atome wurde vor mehreren Jahrzenten dank der Erfindung raffinierter Mikroskopieverfahren möglich. Diese basieren nicht auf Optik, stattdessen wird das Objekt mit einer atomar feinen Sensorspitze abgetastet.

Damit ist man in der Lage, Materie bis auf die Größenordnung eines Ångström, den zehnmillionsten Teil eines Millimeters, abzubilden. Eines dieser Mikroskopieverfahren ist die Rastertunnelmikroskopie, bei welcher durch Strommessung die Elektronenhülle von Materie abgebildet werden kann.

Mit dieser Art von Mikroskopie ist es möglich, die Elektronenwolken von Atomen und Molekülen, welche auch Elektronenorbitale genannt werden, zu untersuchen.

Ein weiteres Mikroskopieverfahren ist die Rasterkraftmikroskopie, welche auf inter-atomaren Kräften basiert und in der Lage ist, einzelne Bindungen zwischen benachbarten Atomen abzubilden. Seit etwa zehn Jahren erhält man so faszinierende Bilder der chemischen Struktur einzelner Moleküle.

Die charakteristischen Eigenschaften der Elektronenorbitale sind entscheidend für praktisch alle chemischen Reaktionen, aber umgekehrt führen chemische Reaktionen auch zu dramatischen Veränderungen der Form der Orbitale. Bislang konnte diese Rückwirkung auf die Elektronenhülle – wenn Atome und Moleküle Ladungen mit ihren Nachbarn austauschen – nicht sichtbar gemacht werden.

Da Rastertunnelmikroskopie auf der Messung von Strömen basiert, benötigt sie eine leitende Unterlage. Diese lässt allerdings nur einen einzelnen stabilen Ladungszustand für ein Molekül zu. Zusätzliche Ladung würde sofort in die darunterliegende leitende Unterlage abfließen, was die mikroskopische Beobachtung des Effekts des Elektronentransfers auf die Molekülorbitale verhindert.

Man muss also Moleküle auf einer elektrisch isolierenden Unterlage untersuchen, wenn man unterschiedliche Ladungszustände studieren möchte. Dies ist prinzipiell mit der Rasterkraftmikroskopie möglich, allerdings kann dieser Typ von Mikroskopie nicht zur Messung der äußeren Elektronenhülle verwendet werden.

An der Universität Regensburg konnte nun erstmals die Rückwirkung des Elektronentransfers auf die Elektronenorbitale in Bildern festgehalten werden. Dieser Durchbruch ist einem Team internationaler Wissenschaftler um den Experimentalphysiker Professor Dr. Jascha Repp gelungen. Die Forscher kombinierten Prinzipien der Rastertunnel- und der Rasterkraftmikroskopie und entwickelten damit eine neuartige Variante.

Anstelle des üblichen Gleichstroms bei der konventionellen Rastertunnelmikroskopie schicken sie in ihrem Versuchsaufbau einen extrem schwachen Wechselstrom zwischen der atomar fein leitenden Spitze und dem zu untersuchenden Molekül. Der Wechselstrom besteht aus nur einem einzigen Elektron, das dazu gebracht wird, zwischen der Sensorspitze und dem Molekül hin- und herzuspringen.

Auf diese Weise fließt keinerlei gerichteter Strom im Mikroskop, das daher auch keine leitende Unterlage für das Molekül benötigt. Dies wiederum erlaubt es den Forschern, das Molekül in jeden gewünschten Ladungszustand zu versetzen, d. h. es ist möglich, das Molekül dazu zu bringen, entweder Elektronen abzugeben oder aufzunehmen – so wie bei einer chemischen Reaktion.

Dabei konnten Sie beobachten, dass ein zusätzliches Elektron seine Verteilung im Molekül ändert, während es sich im Molekül ausbreitet – das Elektron macht es sich gewissermaßen auf dem Molekül gemütlich.

Mit dieser neuen Methode gelang es den Wissenschaftlern so zum ersten Mal, unmittelbare Abbildungen der Veränderungen der Elektronenhülle, welche bei der Aufladung von Molekülen auftreten, zu erhalten – und dies auf der Einzelmolekülebene. Diese neuartigen mikroskopischen Einblicke in die atomaren Details des Elektronentransfers auf der Einzelorbitalebene werfen ein völlig neues Licht auf unser Verständnis von Abläufen im Bereich wichtiger chemischer Reaktionen, wie z. B. Photosynthese, Verbrennung und Korrosion.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jascha Repp
Professur für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: 0941 943-4201
E-Mail: jascha.repp@ur.de

Originalpublikation:

Laerte L. Patera, Fabian Queck, Philipp Scheuerer and Jascha Repp, “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators”, Nature (2019).
DOI: 10.1038/s41586-019-0910-3

Christina Glaser | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-regensburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neutronenforschung: Magnetische Monopole in Kagome-Spin-Eis-Systemen nachgewiesen
08.04.2020 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Quantenphysik: Dispersion der „Bethe Strings” experimentell beobachtet
08.04.2020 | Universität zu Köln

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Frühjahrsputz auf der Nanoskala

08.04.2020 | Materialwissenschaften

Neutronenforschung: Magnetische Monopole in Kagome-Spin-Eis-Systemen nachgewiesen

08.04.2020 | Physik Astronomie

Minimalinvasiver Eingriff senkt den Blutdruck

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics