Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rechnung nicht ohne den Boten machen – Simulationen helfen protonierte Wassercluster zu vermessen

24.08.2010
Wassercluster bezeichnen Wassermoleküle, die sich kurzfristig zu größeren Molekülverbänden zusammenschließen. Diese Wassercluster können weitere positiv geladene Protonen aufnehmen und kommen dann als sogenannte protonierte Wassercluster auch etwa als funktionelle Gruppen in Proteinen vor. Mit Hilfe der Infrarotsprektroskopie lassen sich Bindungsstärke, die molekulare Geometrie und andere Eigenschaften protonierter Wassercluster bestimmen. Für die Messung der Schwingungsspektren sind Botenmoleküle nötig.

Ein Forscherteam um den LMU-Physiker Dr. Gerald Mathias und Professor Dominik Marx von der Ruhr-Universität Bochum, konnte nun erstmals nachweisen, wie diese Strukturen die Zuweisung der spektralen Banden bei der Infrarotspektroskopie beeinflussen. „Unsere Ergebnisse könnten dazu beitragen, solche Messungen besser zu verstehen“, sagt Mathias.

„Das ist wichtig, um beispielsweise die Funktion protonierter Wassercluster in Proteinen zu entschlüsseln. Weil Wassermoleküle praktisch überall vorkommen, könnten die verbesserten Messungen etwa auch bei chemischen Analysen der Erdatmosphäre oder in der Astrochemie zum Einsatz kommen.“ (Angewandte Chemie online, 23. August 2010)

Wassermoleküle sind nicht gern allein. Das verdanken sie einer chemischen Besonderheit: Ihre Atome tragen starke Ladungen, sodass sich benachbarte Wassermoleküle anziehen und über sogenannte Wasserstoffbrücken zu Ketten oder gar Clustern zusammenschließen. Darin sind die einzelnen Wassermoleküle nicht mehr frei beweglich, sondern stark gebunden. Deshalb benötigt das Verdunsten von Wasser, also der Übergang vom flüssigen in den gasförmigen Zustand, auch relativ viel Energie, um diese Bindungen zu brechen. Lagern sich zusätzlich Protonen an, also die positiv geladenen Atomkerne von Wasserstoff, so spricht man von protonierten Wasserclustern. Diese Strukturen sind wichtige Modellsysteme, um die Lösung von Protonen in Wasser zu untersuchen und so dessen pH-Wert und Leitfähigkeit zu verstehen.

Das kleinste protonierte Wassercluster ist das Hydronium-Kation: Es besteht nur aus einem einzelnen Wassermolekül und besitzt die chemische Struktur H3O+. Das Zundel-Ion ist mit einem Proton, das sich zwei Wassermoleküle teilen, dagegen deutlich komplexer. Mithilfe infrarotspektroskopischer Messungen lassen sich die Eigenschaften verschiedener Wassercluster bestimmen. Dabei werden in den Molekülen durch infrarotes Licht verschiedene Schwingungen angeregt, für welche die eingestrahlte Wellenlänge, also die Farbe des Lichts, jeweils charakteristisch ist. Daraus lassen sich dann Rückschlüsse auf die dreidimensionale Struktur des Moleküls und die Stärke der atomaren Bindungen ziehen.

Um die Schwingungsspektren der Wassercluster im gasförmigen Zustand messen zu können, benötigt man kleine Moleküle oder Edelgase wie Neon oder Argon als Boten, welche sich quasi als Spione an die Wassercluster anlagern und die Schwingungen detektieren. „Diese Spektren hängen aber von den Botenmolekülen ab, sodass diese Wechselwirkung bei der Interpretation der Ergebnisse berücksichtigt werden muss“, sagt Dr. Gerald Mathias von der Fakultät für Physik der LMU München. Zusammen mit Forscherkollegen um Professor Dominik Marx von der Ruhr-Universität Bochum konnte er nun zeigen, dass bereits beim Hydronium-Kation durch den Einfluss der Botenmoleküle unerwartete Effekte bei den spektralen Banden auftreten. Mit Hilfe von Simulationen der Dynamik dieser Komplexe aus protonierten Wasserclustern und Botenmolekülen konnte das Team die tatsächlichen Spektren aber aus den Ergebnissen reproduzieren.

„Noch interessanter waren die Ergebnisse beim Zundel-Kation, das ständig seine Form ändert“, sagt Mathias. „Wir konnten zeigen, dass diese Struktur in zwei verschiedenen Formen vorliegt. Im stark gebundenen Zustand lagern sich die Boten direkt an das Zundel-Kation an, beim schwach gebundenen Zustand umkreisen sie es nur. Im schwach gebundenen Zustand konnten wir aber nahezu dieselben Farbspektren beobachten wie beim ungebundenen Zundel-Kation – sodass die Spektren also nicht von den Botenmolekülen beeinflusst wurden.“ Dieses Ergebnis erlaubt nun ein besseres Verständnis der experimentellen Botenspektroskopie, die zur chemischen Analyse der Bestandteile der Erdatmosphäre oder des interstellaren Raumes im Weltall eingesetzt wird. Die Forscher erhoffen sich außerdem neue Rückschlüsse auf die Struktur und Funktion protonierter Wassercluster in Proteinen. (CA/suwe)

Publikation:
„Theoretical Messenger Spectroscopy of
Microsolvated Hydronium and Zundel Cations”;
Marcel Baer, Dominik Marx, Gerald Mathias;
Angewandte Chemie,
23. August 2010,
DOI: 10.1002/anie.201001672
„Structures and spectral signatures of protonated water networks in bacteriorhodopsin”,
G. Mathias und D. Marx,
PNAS USA, 104, 6980–6985,
24. April 2007,
Doi:10.1073/pnas.0609229104
Ansprechpartner:
Dr. Gerald Mathias
Fakultät für Physik der LMU
Tel.: 089 / 2180 – 9228
Fax: 089 / 2180 – 9202
E-Mail: gerald.mathias@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.bmo.physik.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Leibniz-IWT an Raumfahrtmission beteiligt: Bremer unterstützen Experimente im All
14.08.2018 | Leibniz-Institut für Werkstofforientierte Technologien

nachricht Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission
09.08.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics