Reale Materialien aus dem Computer

Das Bild zeigt die atomare Verteilung in einem Kupfer-Kristall. Die grünen Bälle zeigen die Positionen der Atome am absoluten Nullpunkt. Der grau-gestrichelte Kreis in der Mitte ist eine sogenannte Leerstelle, eine Stelle bei der ein Atom in der Gitterstruktur fehlt. Bei höheren Temperaturen vibrieren die Atome aufgrund von Gitterschwingungen um ihre Position am absoluten Nullpunkt. Dies wird durch die schwarze Wolke angedeutet, die die Verteilung der Atome bei der Schmelztemperatur von Kupfer (1084 °C) zeigt. Die Erkenntnisse der Max-Planck-Wissenschaftler über die Wechselwirkung zwischen den Gitterschwingungen und deren Temperaturabhängigkeit, zeigen nun eine deutlich andere Verteilung (orangene Wolken) auf. Bei steigender Temperatur vibrieren die Atome immer näher an der Leerstelle. Dies führt zu signifikanten Änderungen der Energie und Anzahl von Leerstellen und somit zu einer höheren Defektkonzentration und damit verbundenem Materialversagen.

Punktdefekte wie zum Beispiel das Fehlen einzelner Atome bestimmen maßgeblich die Leistungs- und Widerstandsfähigkeit moderner Materialien. Dabei spielt die Anzahl der Defekte eine wichtige Rolle.

Selbst geringste Defektkonzentrationen von 1:100.000 können maßgeblich die Widerstandsfähigkeit von mikroelektronischen Halbleitern, wie Prozessoren und Solarzellen, und Strukturmaterialien, wie Stahl, beeinflussen.

Hierbei bestehen alle Materialien aus Atomen, die im Falle von sogenannten kristallinen Materialien, in Gittern angeordnet sind . Die einzelnen Atome sitzen jedoch nicht perfekt auf den Gitterplätzen, sondern vibrieren mit extrem hohen Geschwindigkeit um diese Plätze – Wissenschaftler sprechen daher von Gitterschwingungen. 

Um Defekte in einem Material zu untersuchen und damit Rückschlüsse auf die Widerstandsfähigkeit zu ziehen, gab es bisher zwei Herangehensweisen. Theoretische Physiker berechneten die Energie der Gitterdefekte, eine Größe, die sehr genau zeigt wie viele Defekte im Material vorhanden sind; ihre Berechnungen funktionierten aber nur am sogenannten absoluten Nullpunkt, das heißt bei ca. -273°C (0 Kelvin).

Experimentelle Physiker dahingegen konnten im Gegensatz zu ihren theoretischen Kollegen anhand von Experimenten Defekte ausschließlich bei sehr hohen Temperaturen (327-727°C; 600-1000 Kelvin) messen. Es bestand also ein großes Temperaturintervall ohne jegliche Daten. Genau dieses fehlende Intervall ist aber wichtig bei der Berechnung von Defekten in Materialien, die bei Raumtemperatur angewendet werden. 

Physikern in der Abteilung ‚Computergestütztes Materialdesign‘ am Max-Planck-Institut für Eisenforschung (MPIE) ist nun der Durchbruch in der Computersimulation von Defekten in genau diesem, fehlenden Temperaturintervall gelungen. „Bisherige Berechnungen der Energien von Gitterdefekten konnten die komplexe Wechselwirkung von Gitterschwingungen nicht einbeziehen.

Dank methodischer Durchbrüche gelang es uns, die Wechselwirkung der Gitterschwingungen und deren Temperaturabhängigkeit in unsere Berechnungen vollständig mitzunehmen und zu zeigen, dass diese maßgeblich die Anzahl der Defekte im Material beeinflusst“, so Albert Glensk, Doktorand am MPIE.

„Alle bisherigen Ergebnisse über Defekte in kristal-linen Materialien müssen nun korrigiert werden. Unsere Rechnungen zeigen, dass die bisher verwendeten Defektenergien um bis zu 20% niedriger ausfallen als angenommen. Zum ersten Mal wird nun die Lücke zwischen Theorie und Experiment überbrückt. Alle experimentellen Ergebnisse können nun auch theoretisch beschrieben werden“, so Glensk. 

Mit dieser neuen Einsicht können Wissenschaftler nun viel genauer berechnen und vorhersagen, wie viele Defekte im Material vorhanden sind, um dadurch Aussagen über die Widerstandsfähigkeit des Materials zu treffen. Mit anderen Worten: es wird zukünftig besser möglich sein Werkstoffe auf dem Computer zu optimieren und Materialversagen vorauszusehen und dadurch besser in Produktionsabläufe einzuplanen.

Originalveröffentlichung:
A. Glensk; B. Grabowski; T. Hickel; J. Neugebauer: Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Importance of Local Anharmonicity Revealed by Ab initio Thermodynamics. Physical Review X 4 (2014) 011018. American Physical Society.
DOI: 10.1103/PhysRevX.4.011018

http://www.mpie.de
http://journals.aps.org/prx/edannounce/PhysRevX.4.010001

Media Contact

Yasmin Ahmed Salem Max-Planck-Institut für Eisenforschung GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer