Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasende Elektronen unter Kontrolle

16.11.2018

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der wichtigsten Komponenten, sie ist verantwortlich für die Daten- und Signalübertragung.


Das treibende Laserfeld (rot) schüttelt Elektronen in Graphen auf ultrakurzen Zeitskalen (violett und blau). Ein zweiter Laserpuls (grün) kann diese Welle steuern und damit die Stromrichtung vorgeben.

Grafik: FAU/Christian Heide

Die Elektronenströme mit Lichtwellen statt wie bisher über Spannungssignale zu kontrollieren, könnte diesen Traum realisieren. Doch bisher hat es sich als schwierig herausgestellt, Elektronenströme in Metallen zu steuern. Denn Metalle reflektieren Lichtstrahlen, die Elektronen im Inneren können daher nicht durch die Lichtwelle beeinflusst werden.

FAU-Physiker greifen daher auf Graphen zurück: ein Halbmetall, das aus nur einer einzigen Lage Kohlenstoff besteht und damit so dünn ist, dass genug Licht einfällt, um Elektronen in Bewegung zu versetzen.

Damit war es den Physikern vom Lehrstuhl für Laserphysik bereits in einer früheren Studie gelungen, mithilfe eines sehr kurzen Laserpulses ein elektrisches Signal zu erzeugen und das auf einer Zeitskala von nur einer Femtosekunde.

Das entspricht dem millionsten Teil einer milliardstel Sekunde. Unter diesen extremen Zeitskalen offenbaren Elektronen ihre Quantennatur: Sie verhalten sich wie eine Welle. Angetrieben vom Lichtfeld, also dem Laserpuls, gleitet die Elektronenwelle durch das Material.

Unter Kontrolle

In der aktuellen Studie sind die Forscher noch einen Schritt weitergegangen. Sie haben einen zweiten Laserpuls auf diese licht-getriebene Welle gerichtet. Dieser zweite Puls ermöglicht es, die Elektronenwelle nun in zwei Dimensionen durch das Material gleiten zu lassen.

Mithilfe des zweiten Laserpuls kann die Elektronenwelle abgelenkt, beschleunigt oder sogar ihre Richtung geändert werden. Abhängig vom exakten Zeitpunkt des zweiten Pulses, seiner Stärke und seiner Richtung, können somit Informationen auf diese Welle übertragen werden.

Man kann sogar noch einen Schritt weitergehen: „Stellen Sie sich die Elektronenwelle als Wasserwelle vor. Wasserwellen können sich an einem Hindernis aufspalten und wenn sie am Ende des Hindernisses wieder zusammenlaufen interferieren. Je nachdem, wie die beiden Teilwellen zueinander im Verhältnis stehen, können sie sich verstärken oder auslöschen.

Mit dem zweiten Laserpuls können wir gezielt die einzelnen Teilwellen modifizieren und damit deren Interferenz kontrollieren“, erklärt Christian Heide vom Lehrstuhl für Laserphysik. „Generell ist es sehr schwierig, Quanten-Phänomene, wie hier die Welleneigenschaft der Elektronen, zu kontrollieren.

Das liegt daran, dass es sehr schwer ist, so eine Elektronenwelle in einem Material aufrecht zu erhalten, da diese zum Beispiel mit anderen Elektronen streut und damit ihre Welleneigenschaft verliert. Typischerweise werden dafür Experimente bei extrem tiefen Temperaturen durchgeführt.

Wir können diese Experimente nun auch an Raumtemperatur durchführen, da wir die Elektronen über Laserpulse so schnell kontrollieren können, dass gar keine Zeit für Streuprozesse mit anderen Elektronen ist. Daraus können wir viele neue physikalische Prozesse erforschen, die uns vorher nicht zugänglich waren.“

Damit sind die Wissenschaftler der durch Lichtwellen gesteuerten Elektronik einen großen Schritt nähergekommen. In den nächsten Jahren werden sie untersuchen, ob sich die Elektronen auch in anderen zweidimensionalen Materialien kontrollieren lassen. Heide: „Vielleicht können wir aber auch über Materialforschung die Eigenschaften der Materialien so verändern, dass sich schon bald kleine lichtgesteuerte Transistoren bauen lassen.“

Wissenschaftliche Ansprechpartner:

Weitere Informationen:
Prof. Dr. Peter Hommelhoff
Peter.hommelhoff@fau.de
Tel.: 09131/85-27090

Christian Heide
christian.heide@fau.de

Originalpublikation:

Ihre Ergebnisse haben die Wissenschaftler im Journal Physical Review Letters veröffentlicht: 10.1103/PhysRevLett.121.207401

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen
15.02.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen
14.02.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics