Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018

Theoretische Physiker kalkulieren Herkunft einer hochenergetischen Teilchenspur im Neutrinoobservatorium IceCube

Vor acht Jahren wurde am Südpol der IceCube-Detektor in Betrieb genommen, eine Forschungsstation zur Suche nach Neutrinos aus dem Weltall. Drei Jahre später erschienen die ersten bahnbrechenden Ergebnisse. Die Entdeckung von hochenergetischen Neutrinos durch IceCube hat neue Wege zum Verständnis des Universums eröffnet.


Die Grafik zeigt verschiedene Neutrinoflüsse als Funktion der Neutrinoenergie, die in GeV (1 GeV = 1 Milliarde eV) ausgedrückt wird, sowie die IceCube-Datenpunkte und Obergrenzen von astrophysikalischen Neutrinoflüssen aus anderen Experimenten.

Abb./©: Matthew D. Kistler and Ranjan Laha


Spektrum der aufsteigenden Taus als Funktion der Energie des Taus beim Eintritt in IceCube: Das vertikale Band zeigt die benötigte Energie des Tau-Teilchens an, um 2,6 PeV in IceCube zu deponieren.

Abb./©: Matthew D. Kistler und Ranjan Laha

"Diese Neutrinos mit ihrer hohen Energie sind neue kosmische Boten und es ist außerordentlich wichtig, dass wir ihre Nachricht genau verstehen", sagt Dr. Ranjan Laha von der Johannes Gutenberg-Universität Mainz (JGU). Der Physiker hat zusammen mit einem Kollegen der US-amerikanischen Stanford University einen Vorschlag unterbreitet, wie die kosmische Botschaft – anders als bisher – interpretiert werden könnte. Nach Berechnung der beiden Physiker könnte es sich um extrem hochenergetische Tau-Partikel handeln, die den IceCube-Detektor passiert haben.

Neutrinos sind fast masselose Teilchen, die Materie nahezu unbemerkt durchdringen und daher sehr schwer zu entdecken sind. Aus dem gleichen Grund sind die Geisterteilchen für die Wissenschaft aber auch besonders wertvoll – weil sie aus den Tiefen des Weltalls zum Beispiel von explodierten Sternen fast ungehindert bis zur Erde vordringen und uns hier von dem Geschehen im Kosmos berichten.

Beim Neutrinoobservatorium IceCube liegen die einzelnen Detektorelemente gut abgeschirmt von Störfaktoren im antarktischen Eis, verteilt auf ein Volumen von einem Kubikkilometer. Das Projekt vermeldete 2013 zum ersten Mal die Entdeckung hochenergetischer Neutrinos aus dem All, seitdem wurden zahlreiche weitere Ereignisse verzeichnet. Die IceCibe-Kollaboration besteht aus 300 Physikern von 49 Institutionen in 12 Ländern, die für das wissenschaftliche Programm verantwortlich sind, darunter auch Forscher der JGU.

Hochenergetische Spur stammt vermutlich nicht von Myon-Neutrino

Matthew Kistler von Stanford und Ranjan Laha haben die Ereignisse untersucht und sind dabei vor allem einem Rätsel nachgegangen: Im Juni 2014 verzeichneten die Sensoren von IceCube eine Spur mit einer außergewöhnlich hohen Energie. Das Ereignis gab 2,6 Petaelektronenvolt (PeV) ab, also 2,6 Billiarden Elektronenvolt. Zum Vergleich: Zusammenstöße von Protonen im größten Teilchenbeschleuniger der Welt, dem Large Hadron Collider am CERN, erfolgen mit einer Energie von 13 Billionen Elektronenvolt.

"Diese Spur vom Juni 2014 wirft sofort Fragen auf", sagt Laha mit dem Hinweis, dass es sich bis heute um das Ereignis mit der höchsten Energie handelt. "Vor allem die Frage, welche Art von Neutrino eine solche Spur hinterlässt." Es gibt drei Arten von Neutrinos: Elektron-, Myon- und Tau-Neutrinos.

Auf der Suche nach einer Antwort haben sich die beiden Physikkollegen zunächst der Standardannahme zugewandt, nämlich dass die Spur von einem Myon abstammt. Ein Myon-Neutrino hätte sich bei einem Zusammenstoß mit einem Atomkern in ein Myon umgewandelt, das von den optischen Sensoren des IceCube-Detektors entdeckt worden wäre. "Wir zeigen, dass diese Annahme ziemlich unwahrscheinlich ist", so Laha.

Stattdessen erwägen die Wissenschaftler die Möglichkeit, dass die Spur von einem hochenergetischen Tau-Lepton stammen könnte – eine komplett neue und unkonventionelle Deutungsweise. Um 2,6 PeV im Detektor abzugeben, bräuchte das entsprechende Tau-Neutrino eine Anfangsenergie von mindestens 50 PeV. "Ein Tau-Teilchen, das den Detektor auf einer Länge von einem Kilometer ohne Zerfall durchläuft und dabei eine Energie von 2,6 PeV abgibt, müsste von einem Neutrino mit einer wesentlich höheren Energie stammen", erklärt Laha. "Dies würde ein völlig unerwartetes Fenster öffnen, um astrophysikalische Neutrinos mit Energien bei 100 PeV wahrzunehmen."

Im Rahmen ihrer Untersuchung zeigen die Wissenschaftler, dass es sich bei dem 2,6-PeV-Ereignis vermutlich um eine neuartige Komponente des astrophysikalischen Neutrinospektrums handelt. Bei den Ereignissen, die IceCube verzeichnet, wäre normalerweise eine gewisse Kontinuität zu erwarten. Der Abstand zwischen dem genannten Ereignis mit der bis heute höchsten Energie und den anderen gemessenen Daten ist allerdings ungewöhnlich groß.

"Wir wissen nicht genau, um was für eine Spur es sich bei den 2,6 PeV handelt, aber mit ziemlicher Sicherheit nicht um ein durchziehendes Myon, vielleicht aber um ein Tau-Teilchen", so Laha. "Wir halten das Ereignis insgesamt für so bedeutsam, dass es weiter untersucht werden sollte. Und wir brauchen noch mehr Daten, um Genaueres zu erfahren und die kosmische Botschaft zu entziffern."

Ranjan Laha forscht als Postdoc in der Arbeitsgruppe von Prof. Dr. Joachim Kopp, Professor für Theoretische Teilchenphysik am Mainzer Exzellenzcluster "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA).

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_thep_icecube_neutrinofluss.jpg
Die Grafik zeigt verschiedene Neutrinoflüsse als Funktion der Neutrinoenergie, die in GeV (1 GeV = 1 Milliarde eV) ausgedrückt wird, sowie die IceCube-Datenpunkte und Obergrenzen von astrophysikalischen Neutrinoflüssen aus anderen Experimenten.
Abb./©: Matthew D. Kistler and Ranjan Laha

http://www.uni-mainz.de/bilder_presse/08_physik_thep_icecube_tau-neutrinos.jpg
Spektrum der aufsteigenden Taus als Funktion der Energie des Taus beim Eintritt in IceCube: Das vertikale Band zeigt die benötigte Energie des Tau-Teilchens an, um 2,6 PeV in IceCube zu deponieren.
Abb./©: Matthew D. Kistler und Ranjan Laha

Veröffentlichung:
M. D. Kistler, R. Laha, Multi-PeV signals from a new astrophysical neutrino flux beyond the Glashow resonance, Physical Review Letters 120, 241105, 15. Juni 2018,
DOI: 10.1103/PhysRevLett.120.241105
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.241105

Kontakt:
Prof. Dr. Joachim Kopp
Theoretische Hochenergiephysik (THEP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-26117
E-Mail: jkopp@uni-mainz.de
http://www.staff.uni-mainz.de/jkopp/

Dr. Ranjan Laha
Theoretische Hochenergiephysik (THEP)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-24214
Fax +49 6131 39-24611
E-Mail: ranjalah@uni-mainz.de

Weiterführende Links:
http://www.prisma.uni-mainz.de/deu/846.php – Professor Dr. Joachim Kopp, PRISMA-Professur für Theoretische Teilchenphysik
http://www.prisma.uni-mainz.de – Exzellenzcluster PRISMA - Precision Physics, Fundamental Interactions and Structure of Matter
https://icecube.wisc.edu/ – IceCube South Pole Neutrino Observatory

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/4073_DEU_HTML.php – Pressemitteilung "Kosmisches Röntgenlicht als möglicher Hinweis auf Dunkle Materie" (09.02.2018)
http://www.uni-mainz.de/presse/aktuell/3620_DEU_HTML.php – Pressemitteilung "Mainzer Physiker schlagen neue Methode zur Überwachung von Atommüll vor" (06.12.2017)
http://www.uni-mainz.de/presse/aktuell/2360_DEU_HTML.php – Pressemitteilung "Neue Theorie zur Entstehung Dunkler Materie vorgestellt" (08.08.2017)
http://www.uni-mainz.de/presse/58532.php – Pressemitteilung "IceCube liefert Anzeichen für Neutrinos aus dem Kosmos" (22.11.2013)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics