Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafter kosmischer Strahlungsausbruch wiederholt sich in gleicher Quelle

03.03.2016

Ein internationales Forscherteam unter Beteiligung von Astronomen aus dem Bonner Max-Planck-Institut für Radioastronomie hat die erste Quelle von wiederholten Radiostrahlungsausbrüchen außerhalb der Milchstraße entdeckt. Diese Kurzzeit-Strahlungsausbrüche im Radiobereich dauern jeweils nur einige Millisekunden und ihr rätselhaftes Verhalten beschäftigt die Forscher bereits seit der Erstentdeckung vor fast zehn Jahren. Die aktuellen Resultate lassen darauf schließen, dass die beobachteten Ausbrüche von einem extrem leuchtkräftiges Objekt stammen, das gelegentlich auch Mehrfachausbrüche innerhalb eines Zeitraums von weniger als einer Minute produziert.

„Wir haben niemals zuvor gesehen, dass sich ein Radiostrahlungsausbruch in der gleichen Quelle wiederholt hat”, sagt Laura Spitler, die Erstautorin der Veröffentlichung, die als Postdoc am Max-Planck-Institut für Radioastronomie (MPIfR) arbeitet. „Um sicherzugehen, haben wir eine bereits vorher entdeckte Radioburst-Quelle über Monate hinweg systematisch überwacht.“


Das 305m-Arecibo-Radioteleskop, das erste Teleskop, mit dem ein wiederholter FRB-Ausbruch von derselben Quelle nachgewiesen werden konnte.

Danielle Futselaar


Der ursprünglich entdeckte “Burst 1” und 10 neue Strahlungsausbrüche von der Radioquelle FRB 121102. Die Strahlungsausbrüche sind als Funktion der beobachteten Radiofrequenz dargestellt.

Paul Scholz (Fig. 2 in Spitler et al., Nature)

Die Beobachtungen der Kurzzeit-Radiostrahlungsausbrüche („Fast Radio Bursts“ oder FRBs) wurden mit dem Arecibo-Radio-Teleskop in Puerto Rico durchgeführt, dem zur Zeit weltweit größten Einzelteleskop mit einem Spiegeldurchmesser von 305 Metern.

Bis jetzt gehen die meisten Theorien zum Ursprung dieser rätselhaften Strahlungsausbrüche davon aus, dass es sich dabei um verheerende Ereignisse handelt, bei denen die Quelle selbst zerstört wird. Das könnte zum Beispiel eine Supernova-Explosion sein, oder auch der Kollaps eines Neutronensterns in ein Schwarzes Loch.

Das hat sich seit November 2015 grundliegend verändert, als nämlich Paul Scholz, ein Doktorand an der kanadischen McGill-Universität, die Ergebnisse einer systematischen Überwachung durchging und dabei auf 10 weitere Strahlungsausbrüche stieß. „Die wiederholt auftretenden Signale waren eine Überraschung – und sehr aufregend!“ freut sich Paul Scholz. „Mir war sofort klar, dass diese Entdeckung für die weitere Untersuchung der Strahlungsausbrüche extrem wichtig sein würde.“

Die Beobachtung lässt darauf schließen, dass die Ausbrüche auf ein sehr exotisches Objekt zurückzuführen sind, wie zum Beispiel einen schnell rotierenden Neutronenstern mit bisher nicht gekannter Energie, die die Aussendung von extrem intensiven Strahlungspulsen ermöglicht. Es ist durchaus möglich, dass dieses Ergebnis die erstmalige Entdeckung einer neuen Unterklasse in der Population kosmischer Kurzzeit-Radiostrahlungsausbrüche darstellt.

„Es ist nicht nur so, dass die Strahlungsausbrüche sich bei dieser Quelle wiederholen, auch Helligkeit und Spektralverhalten unterscheiden sich deutlich von anderen FRBs“, stellt Laura Spitler fest. Ein zusätzliches Argument für die Existenz von mehreren Klassen von FRBs kommt von einer Untersuchung, die in Kürze in der Fachzeitschrift „Monthly Notices of the Royal Astronomical Society“ veröffentlicht wird.

Sie berichtet über die erstmalige Entdeckung von Strahlungsausbrüchen mit zwei direkt aufeinanderfolgenden Maxima, die mit dem australischen Parkes-Radioteleskop entdeckt wurden. „Die Aussendung von zwei Pulsen hintereinander mit nur wenigen Millisekunden Abstand können wir am ehesten mit Strahlungsausbrüchen auf der Oberfläche eines Neutronensterns erklären“, sagt David Champion vom MPIfR, der Erstautor dieser Untersuchung.

Interessanterweise steht die wahrscheinlichste Erklärung des neuen Arecibo-Ergebnisses – dass nämlich der wiederholte Strahlungsausbruch von selben Ursprungsobjekt auf einen jungen Neutronenstern von außerhalb der Milchstraße schließen lässt – scheinbar im Widerspruch mit dem Ergebniseiner weiteren Untersuchung, die erst letzte Woche in „Nature“ veröffentlicht wurde, und an der ebenfalls Wissenschaftler vom MPIfR beteiligt waren.

Darin wird vorgeschlagen, dass sich FRBs auf zerstörerische Einzelereignisse zurückführen lassen, wie zum Beispiel Kurzzeit-Gammastrahlungsausbrüche, die die Quelle selbst zerstören und keine Wiederholung zulassen. Beide Resultate zusammengenommen liefern ein starkes Argument dafür, dass es zumindest zwei unterschiedliche Arten von FRBs gibt.

In Zukunft hoffen die Wissenschaftler darauf, durch Beobachtungen in anderen Wellenlängenbereichen noch mehr über diese Strahlungsausbrüche erfahren zu können. „Wir sind dabei, unsere Radiobeobachtungen mit den entsprechenden Beobachtungen von optischen und Röntgenteleskopen zu vergleichen“, sagt Jason Hessels (Universität Amsterdam & ASTRON, Niederlande). „Es ist eine sehr aufregende Zeit für die Untersuchung von FRBs. Man kann mit beinahe jeder Quelle etwas Neues lernen.“


Am Projekt beteiligte Wissenschaftler vom Max-Planck-Institut für Radioastronomie sind
Laura Spitler, die Erstautorin, sowie Paulo Freire, Patrick Lazarus und Weiwei Zhu.

Das Arecibo-Observatorium wird von SRI International unter einem Kooperationsvertrag mit der National Science Foundation (AST-1100968) betrieben, in Zusammenarbeit mit der Ana G. Méndez-Universidad Metropolitana, und der Universities Space Research Association.

Das Forschungsprojekt wurde unterstützt durch den “European Research Council”, den “National Science and Engineering Council of Canada”, und die “American National Science Foundation”.

Originalveröffentlichung:

“A repeating fast radio burst”, von L. G. Spitler, P. Scholz, J. W. T. Hessels, S. Bogdanov, A. Brazier, F. Camilo, S. Chatterjee, J. M. Cordes, F. Crawford, J. Deneva, R. D. Ferdman, P. C. C. Freire, V. M. Kaspi, P. Lazarus, R. Lynch, E. C. Madsen, M. A. McLaughlin, C. Patel,
S. M. Ransom, A. Seymour, I. H. Stairs, B. W. Stappers, J. van Leeuwen & W. W. Zhu. Veröffentlichung in “Nature” am 3. März 2016 (Sperrfrist bis 2. März 2016, 19:00 MEZ)


Lokaler Kontakt:

Dr. Laura Spitler
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-314
E-mail: lspitler@mpifr-bonn.mpg.de

Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-315
E-mail: dchampion@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressemeldungen/2016/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns
24.06.2019 | Technische Universität Darmstadt

nachricht Partielle Mondfinsternis am 16./17. Juli 2019
24.06.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Molekulare Schere stabilisiert das Zell-Zytoskelett

24.06.2019 | Biowissenschaften Chemie

Neues „Intelligent Edge Data Center“ bringt Smart Industries auf nächstes Level

24.06.2019 | Unternehmensmeldung

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics