Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rätselhafte Größe extrem leichter Calciumisotope

12.02.2019

Ein internationales Forschungsprojekt unter Beteiligung von Kernphysikern und Kernphysikerinnen der TU Darmstadt hat erstmals in hochpräzisen Messungen die Radien extrem leichter Calciumisotope bestimmt und davon ausgehend die Theorie zur Beschreibung von Isotopenradien deutlich verbessern können. Die Ergebnisse wurden jetzt in der Zeitschrift „Nature Physics“ veröffentlicht.

Atomkerne bestehen aus positiv geladenen Protonen und den ungeladenen Neutronen. Da alle Kerne eine nahezu konstante Dichte in ihrem Inneren aufweisen, erwartet man, dass die Größe eines Atomkerns mit der Anzahl seiner Konstituenten kontinuierlich anwächst.


Die Grafik zur Studie: © Andrew Miller, NSCL/MSU

Besonders genau messen kann man die Ladungsradien der Kerne, also die mittlere Ausdehnung ihrer Ladungsverteilung, entlang einer Isotopenkette.

Von den stabilen Kernen ausgehend, bei denen Protonen und Neutronen in einem ausgewogenen Verhältnis stehen, gelangt man durch Hinzufügen oder Entnehmen von Neutronen zu neutronenreichen oder protonenreichen Kernen.

Dabei stellt man allerdings fest, dass die Radien in einer viel komplexeren Weise variieren, als man es nach diesem einfachen Bild erwartet.

Von speziellem Interesse sind in diesem Zusammenhang die Calciumisotope. Die beiden Isotope 40Ca und 48Ca besitzen praktisch den gleichen Radius, dazwischen verändern sich die Radien in einem charakteristischen Zick-Zack-Muster, und 52Ca besitzt einen überraschend großen Radius, wie sich bereits in früheren Untersuchungen zeigte.

Obwohl dieses Muster von bestehenden Theorien teilweise reproduziert werden konnte (graue Linie in der Abbildung), sind doch viele der existierenden Theorien kaum in der Lage, die komplexen Größenschwankungen der Ladungsradien zu erklären. Unterhalb des leichtesten stabilen Isotops 40Ca war nur der Ladungsradius von 39Ca bekannt, da es sehr schwierig ist, die protonenreichen Isotope zu produzieren.

Der Radius eines Calciumkerns ist winzig klein, ungefähr 0,0000000000000035 Meter (oder 3,5 Femtometer), und die zu messenden Variationen sind noch einmal 200-mal kleiner. Hinzu kommt, dass die protonenreichen Isotope sehr kurzlebig sind. 36Ca existiert beispielsweise nur für eine Zehntelsekunde.

Die winzigen Veränderungen ihrer Ladungsradien konnten nun mit einer empfindlichen Methode der Laserspektroskopie am BECOLA-Experiment (Beam Cooling and Laser Spectroscopy) des National Superconducting Cyclotron Laboratory (NSCL) an der Michigan State University (MSU) erstmals gemessen werden.

Physiker der TU Darmstadt um Professor Wilfried Nörtershäuser haben zu dem Experiment die von Co-Autor Bernhard Maaß entworfene Nachweisregion beigesteuert, in der das „Leuchten“ (das Fluoreszenzlicht) der seltenen Calciumisotope detektiert wurde.

Dieses sehr effiziente System, das im Rahmen des Sonderforschungsbereiches (SFB) 1245 am Institut für Kernphysik der TU Darmstadt gebaut wurde, war ausschlaggebend für die erfolgreiche Messung des Ladungsradius des exotischsten der untersuchten Isotope (36Ca), das mit einer Rate von nur 50 Atomen pro Sekunde erzeugt wird.

In der nun in der Zeitschrift „Nature Physics“ publizierten Arbeit wurden die Ladungsradien dreier protonenreicher Kerne (mit den Massenzahlen A=36, 37, 38) erstmals gemessen (rote Quadrate in der Abbildung). Diese stellten sich als viel kleiner heraus, als von theoretischer Seite vorhergesagt und sind erneut eine Herausforderung für die Theorie.

Es gelang der Forschergruppe, durch eine Anpassung des theoretischen Modells, die speziell diese neuen Daten im Blick hatte, eine deutlich verbesserte Beschreibung entlang der gesamten Isotopenkette von 36Ca bis 52Ca zu erzielen (blaue Linie in der Abbildung). Dieser Erfolg ist einem besseren Verständnis der speziellen Weise, in der die Protonen außerhalb des kompakten Kerns in vergleichsweise großen Abständen von der Kernoberfläche miteinander in Wechselwirkung treten, zuzuschreiben.

Dazu muss man wissen, dass die Dichte der Protonen am Kernrand nicht schlagartig auf Null abfällt, sondern über eine endliche Distanz abklingt. Obwohl man in den äußeren Bereichen nur wenige Protonen antrifft, hat deren Verhalten aufgrund des großen Abstandes vom Zentrum offenbar einen signifikanten Einfluss auf den mittleren Ladungsradius. Das verbesserte Verständnis an dieser Stelle wird einen großen Einfluss auf die weitere Entwicklung globaler Kernmodelle haben.

Am NSCL wird derzeit eine neue Beschleunigeranlage, die Facility for Rare Isotope Beams (FRIB), aufgebaut, an der viele weitere Isotope verschiedenster Elemente erstmals erzeugt werden können. Für das BECOLA-Experiment und die daran beteiligten Wissenschaftlerinnen und Wissenschaftler eröffnen sich damit neue Möglichkeiten, in noch exotischere Regionen vorzustoßen. Die gleiche Nachweiskammer wird künftig auch an der Beschleunigeranlage FAIR (Facility for Antiproton and Ion Research) in Darmstadt zur Anwendung kommen, wo man vor allen Dingen schwerere Elemente untersuchen können wird.

Die Grafik zur Studie:
Die Grafik steht zum Download bereit unter: https://bit.ly/2WVPVqC

Originalpublikation:

https://www.nature.com/articles/s41567-019-0416-9

Claudia Staub | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Turbulenz – normaler als gedacht?
20.08.2019 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung
16.08.2019 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Turbulenz – normaler als gedacht?

20.08.2019 | Physik Astronomie

Reaktionsmechanismus der PUVA-Lichttherapie von Hauterkrankungen aufgeklärt

20.08.2019 | Biowissenschaften Chemie

Internationales Forscherteam unter Leitung der Universität Göttingen entschlüsselt Abwehrmechanismus von Schimmelpilzen

20.08.2019 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics